

KLIMATPROF.ONLINE

Торговый Дом КЛИМАТПРОФ предлагает своим партнерам удобный инструмент работы через через сервис «КЛИМАТПРОФ.ОНЛАЙН» в любое удобное время из любой точки мира

Ваше время бесценно. Пользуясь сервисом, вы экономите до 57 часов в год.

СЕРВИС «КЛИМАТПРОФ ОНЛАЙН» ПРЕДОСТАВЛЯЕТ СЛЕДУЮЩИЕ ВОЗМОЖНОСТИ:

- 1. Доступ к актуальной информации по наличию и цене оборудования.
- 2. Круглосуточное резервирование товара.
- 3. Оперативное оформление заказа и получение счета на оплату.
- 4. Онлайн отслеживание статуса заказа через удобный личный кабинет.
- 5. Онлайн решение технических вопросов.
- 6. Консультация персонального менеджера в режиме онлайн.

8-800-333-01-70 klimatprof.online

Торговая марка LESSAR известна на климатическом рынке России с 2003 года. Широкий ассортимент TM LESSAR позволяет предлагать нашим покупателям максимальный спектр оборудования для кондиционирования, вентиляции и холодоснабжения помещений и зданий самого разного масштаба, назначения и степени сложности. В сотрудничестве с крупнейшими мировыми производителями климатической техники мы создаем максимально функциональное и энергоэффективное оборудование высокого качества.

«В ГАРМОНИИ С ПРИРОДОЙ»

Эта фраза стала символом производственно-торговой политики TM LESSAR.

Мы создаем безупречную продукцию. Широкий модельный ряд, высокое качество изделий позволяют вывести эффективность использования оборудования на высший уровень.

Мы стремимся потреблять лишь то количество ценных ресурсов, которое действительно необходимо для создания качественного продукта; осуществляем возврат материалов с целью повторного использования в производственном цикле и правильную утилизацию отходов.

Мы постоянно работаем над повышением энергоэффективности оборудования, чтобы сохранять невозобновляемые ресурсы планеты.

Мы используем передовые eco-friendly технологии, способные минимизировать отрицательное влияние на окружающую среду.

-

LESSAR PROF СОДЕРЖАНИЕ

СОДЕРЖАНИЕ

Торговая	марка LESSAR				6
Фанкойль	ı LESSAR класса Optim	ıa			10
•	дительности фанкойлованкойлов			Фанкойлы LSFAQ42C напольно-потолочные четырехтрубные без корпуса	34
	Фанкойлы LSFКН22 настенные двухтрубные			Фанкойлы LSFDR22L канальные низконапорные двухтрубные	36
	Фанкойлы LSFВ1J22 кассетные однопоточные двухтрубные	16		Фанкойлы LSFDR22 канальные низконапорные двухтрубные	38
	Фанкойлы LSFBP22C кассетные двухтрубные компактные	18		Фанкойлы LSFDR22H канальные средненапорные двухтрубные	40
	Фанкойлы LSFВР42С кассетные четырехтрубные компактные	20		Фанкойлы LSFDN42L канальные низконапорные четырехтрубные	42
	Фанкойлы LSFBM22 кассетные двухтрубные Фанкойлы LSFBM42			Фанкойлы LSFDG42 канальные низконапорные четырехтрубные	44
	кассетные четырехтрубные Фанкойлы LSFAQ22 напольно-потолочные двухтрубные в корпусе			Фанкойлы LSFDG42H канальные средненапорные четырехтрубные	46
	Фанкойлы LSFAQ22C напольно-потолочные двухтрубные без корпуса	28		Фанкойлы LSFDD22H(E) канальные средненапорные двухтрубные	48
-	Фанкойлы LSFAQ42 напольно-потолочные			ирующие узлы ЗРУ-Р	
Million	четырехтрубные в корпусе	30		пан с приводом LZ-V2(4)	
	Фанкойлы LSFAQ42A напольно-потолочные четырехтрубные в корпусе	32	Принципиальн	пя фанкойлов ные схемы централизованного анкойлами	

DC фанко	рйлы LESSAR класса Optima				58
Маркировка	фанкойлов	59		DC фанкойлы LSF-EAQ22C напольно-потолочные двухтрубные без корпуса	72
	DC фанкойлы LSF-EKQ22 настенные двухтрубные	60			
	DC фанкойлы LSF-EBQ22C кассетные двухтрубные компактные	62		DC фанкойлы LSF-EDQ22 канальные низконапорные двухтрубные	74
	DC фанкойлы LSF-EBQ42C кассетные четырехтрубные компактные	64		DC фанкойлы LSF-EDR22 канальные низконапорные двухтрубные	76
	DC фанкойлы LSF-EBQ22		Запорно-регул	пирующие узлы ЗРУ-Р	78
	кассетные двухтрубные	66	3-ходовой кла	пан с приводом LZ-V2(4)	80
	DC фанкойлы LSF-EBQ42 кассетные четырехтрубные	68	Аксессуары д	пя DC фанкойлов	81
	DC фанкойлы LSF-EAQ22 напольно-потолочные двухтрубные в корпусе	70	Принципиальн централизова DC фанкойлам	ные схемы нного управления ии	85

LESSAR PROF СОДЕРЖАНИЕ

.....88

СОДЕРЖАНИЕ

Чиллеры І	LESSAR		88
Чиллеры моно	иллеров	с инверторны	ульные с воздушным конденсатором м винтовым компрессором ee Cooling112
конденсаторо	м со встроенным гидромодулем90		одульных чиллеров с системой117
	Чиллеры LUC-ЕНААСАР моноблочные с воздушным охлаждением конденсатора с DC-инверторным компрессором переменной производительности со встроенным гидромодулем92	NEW	Чиллеры LUC-VSCXF-FC(-I) модульные с воздушным конденсатором с инверторным винтовым компрессором с системой Free Cooling
	Чиллеры LUC-E(I)HA(D)ACAP		ульные с водяным охлаждением со спиральными компрессорами 120
	моноблочные с воздушным конденсатором с компрессорами переменной производительности со встроенным гидромодулем		Чиллеры LUC-FHD(M)WCACB модульные в корпусе с водяным конденсатором со спиральными компрессорами
	ильные с воздушным конденсатором ми компрессорами96		дяным охлаждением конденсатора компрессорами124
	Чиллеры LUC-E(I)HA(D)ACAW модульные с воздушным конденсатором с компрессорами переменной производительности	NEW	Чиллеры LUC-VSA(D)WCXF с водяным охлаждением конденсатора с инверторными винтовыми компрессорами
RAAA.	Чиллеры LUC-FHA(D)(M)ACAW(-B) модульные с воздушным конденсатором с компрессорами постоянной производительности	NEW	Чиллеры LUC-SSA(D)WCXF-B с водяным охлаждением конденсатора с винтовыми компрессорами
NEW	Чиллеры LUC-FHA(D)ACA-B		Чиллеры LUC-SSA(D)WCXF-M с водяным охлаждением конденсатора с винтовыми компрессорами
	модульные с воздушным конденсатором с компрессорами постоянной производительности	с центробежн	дяным охлаждением конденсатора ыми компрессорами гого сжатия134
NEW	Чиллеры LUC-FHMACA(C)(P)-B		ентробежных чиллеров с водяным конденсатора135
	модульные с воздушным конденсатором со спиральными компрессорами постоянной производительности106		Чиллеры LUC-CSTWCXM-В с водяным охлаждением конденсатора с центробежными компрессорами двухступенчатого сжатия
	ульные с воздушным конденсатором компрессорами108		Чиллеры LUC-CSTWBXM-В с водяным охлаждением конденсатора с центробежными компрессорами двухступенчатого сжатия
100	Чиллеры LUC-SSA(D)AСХН модульные с воздушным конденсатором с винтовыми компрессорами		обционные бромистолитиевые (АБХМ)142 бсорбционных чиллеров143

	идравлические насосные для чи	
	Компрессорно-конденсаторные блоки LUQ-СА	Модули і
		Маркировка модулей ги
9	Инверторные компрессорно-конденсаторные блоки LUQ-EAUA2(4)-H(V)148	Модули I с резерв
Крышные кон	ндиционеры152	Маркировка модулей ги
Маркировка к	хрышных кондиционеров153	с резервным насосом.
	Крышные кондиционеры LUR-FA(D)NC24A	
E1 1	Крышные кондиционеры LUR-FA(D)NH24A	

Компрессорно-конденсаторные блоки, крышные кондиционеры,

	Модули гидравлические насосные158
Маркировка м	одулей гидравлических насосных158
	Модули гидравлические насосные с резервным насосом
	одулей гидравлических насосных насосом160

LESSAR PROF

ΤΟΡΓΟΒΑЯ ΜΑΡΚΑ LESSAR

ТОРГОВАЯ MAPKA LESSAR

ГРУППЫ ОБОРУДОВАНИЯ LESSAR

Ассортимент бренда LESSAR включает три группы оборудования: Home&Business, Prof, Vent. Это позволяет полностью обеспечить климатической техникой объекты любой сложности. При разработке и производстве климатической техники специалисты LESSAR делают акцент на инновационных энергосберегающих технологиях, позволяющих получить максимальный уровень энергоэффективности.

HOME&BUSINESS — кондиционирование

Серия оборудования для обеспечения комфортного микроклимата в жилых и коммерческих помещениях. В эту группу оборудования входят:

- бытовые сплит- и мультисплит-системы;
- полупромышленные сплит-системы;
- тепловые насосы;
- мультизональные системы LMV.

Передовые технологии энергосбережения, высокое качество, надежность, стильный дизайн, низкий уровень шума — отличительные черты бытового и полупромышленного оборудования LESSAR, за которые его выбирают наши клиенты.

PROF — холодоснабжение

Промышленные системы кондиционирования и холодоснабжения, применяемые на объектах общественного и индустриального назначения самого широкого профиля. Данная серия оборудования включает в себя:

- фанкойлы:
- охладители жидкости (чиллеры);
- компрессорно-конденсаторные блоки (ККБ);
- крышные кондиционеры (руфтопы);
- аксессуары.

Оборудование группы LESSAR PROF соответствует высочайшим требованиям, предъявляемым к системам холодоснабжения.

VENT — вентиляция

Серия современного оборудования для систем вентиляции. В данную группу входят:

- центральные вентиляционные установки;
- компактные вентиляционные установки;
- канальное вентиляционное оборудование.

ПОЧЕМУ КЛИЕНТЫ ВЫБИРАЮТ БРЕНД LESSAR

Широкий ассортимент оборудования

TM LESSAR предоставляет возможности для полной комплектации объектов любой сложности климатическим оборудованием одной марки.

Инновационные технологии

Климатическое оборудование LESSAR отвечает последним тенденциям рынка, предлагая партнерам передовые технологии в своем сегменте.

Высокое качество продукции

Все оборудование TM LESSAR проходит многоступенчатый контроль качества на заводах-производителях и подтверждает свою надежность многолетней эксплуатацией на объектах.

Комплексная поддержка партнеров

Маркетинговая, инженерная, гарантийная и постгарантийная поддержка специалистами TM LESSAR, подбор оборудования онлайн.

Наличие на складе широкой линейки оборудования

Работа с TM LESSAR позволяет сократить сроки ожидания и оперативно отгрузить нужное оборудование.

Эффективная логистическая сеть

Оптимально настроенные цепи поставок и широкая сеть филиалов позволяют в кратчайшие сроки обеспечить оборудованием объекты в любом регионе.

Удобство заказа

Помимо традиционных средств связи партнерам TM LESSAR доступен заказ оборудования 24/7 в режиме онлайн на сайте klimatprof.online.

ПРИМЕРЫ ОБЪЕКТОВ, ГДЕ УСТАНОВЛЕНО ОБОРУДОВАНИЕ LESSAR

Торгово-развлекательный центр «ГРОЗНЫЙ МОЛЛ» г. Грозный

Установленное оборудование LESSAR:

■ Компрессорно-конденсаторные блоки

Цех розлива соков фирмы «Нектар»

г. Самара

Установленное оборудование LESSAR:

Фанкойлі

Аэропорт Тобольск им. Семена Ремезова Тюменская область, Тобольский район

Установленное оборудование LESSAR:

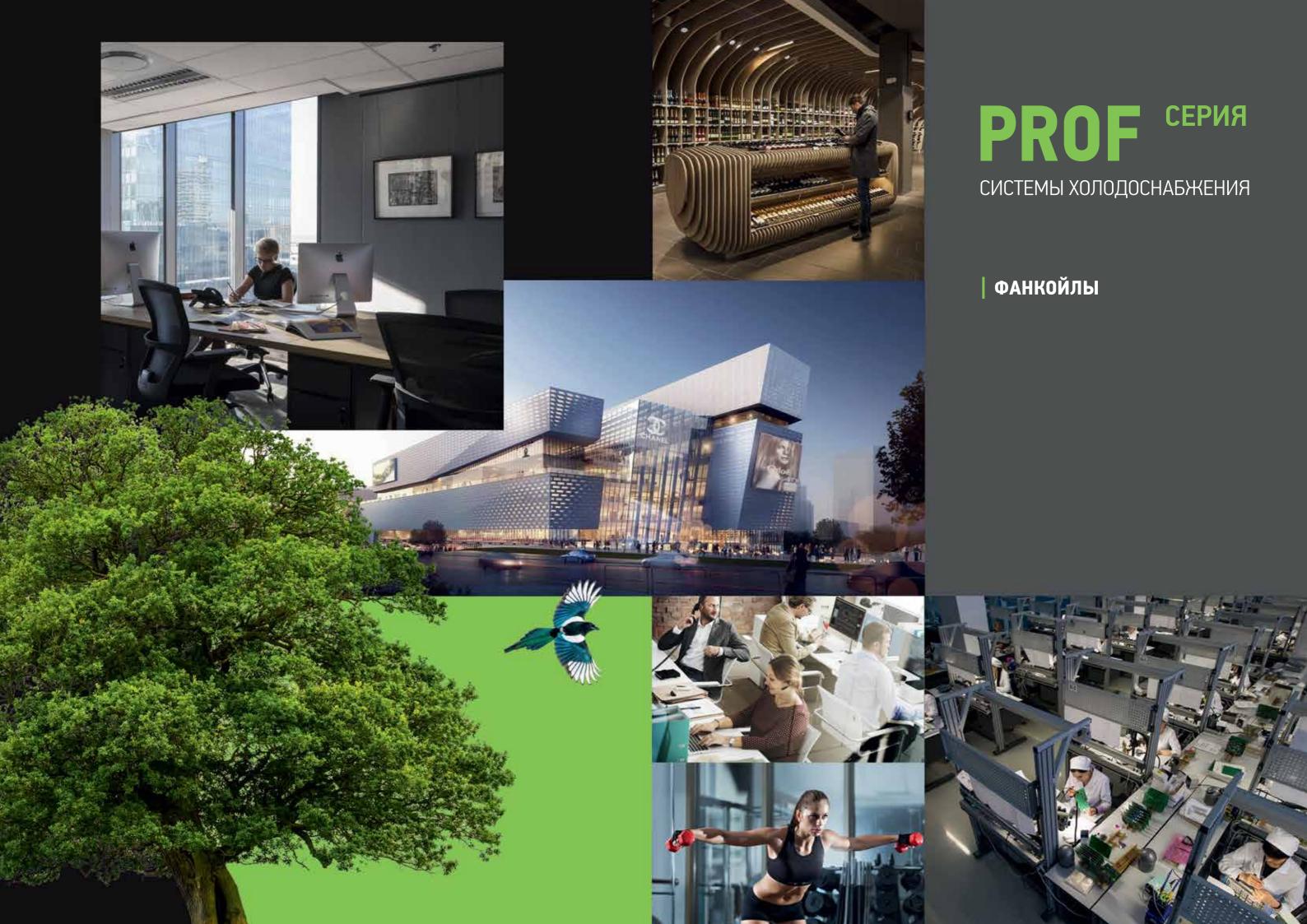
Фанкойлы

Развлекательный центр «Гиппопо»

г. Волгоград

Установленное оборудование LESSAR:

■ Чиллер



Национальный музей Республики Адыгея г. Майкоп

Установленное оборудование LESSAR:

■ Компрессорно-конденсаторные блоки

Больше объектов на сайте lessar.con

Фанкойлы LESSAR

Следуя принципу постоянного развития с ориентацией на потребности рынка, **LESSAR** продолжает развивать модельный ряд двухтрубных и четырехтрубных фанкойлов. Фанкойлы **LESSAR** — это высокоэффективные внутренние блоки системы централизованного кондиционирования воздуха типа «чиллер-фанкойл», с отличными функциональными характеристиками и с низким уровнем шума. Современный дизайн позволяет вписать их практически в любой интерьер.

					КОДЬ	І ПРОИЗВ	ОДИТЕЛЬ	НОСТИ			
модель		150	200	250	300	350	400	450	500	550	600
Фанкойлы настенные 2-трубные LSFKH22	_			•	•		•		•		•
Фанкойлы кассетные однопоточные 2-трубные LSFB1J22					•		-				
Фанкойлы кассетные компактные 2-трубные LSFBP22C					•		•		•		
Фанкойлы кассетные компактные 4-трубные LSFBP42C					•		•		•		
Фанкойлы кассетные 2-трубные LSFBM22											•
Фанкойлы кассетные 4-трубные LSFBM42											•
Фанкойлы напольно-потолочные 2-трубные в корпусе LSFAQ22	The same	•	•	•	•		٠	•	٠	٠	•
Фанкойлы напольно-потолочные 2-трубные без корпуса LSFAQ22C		•	•	-	•		-	•	•	•	•
Фанкойлы напольно-потолочные 4-трубные в корпусе LSFAQ42	Harrie .			•		•			٠		•
Фанкойлы напольно-потолочные 4-трубные в корпусе LSFAQ42A			•		-		•			•	
Фанкойлы напольно-потолочные 4-трубные без корпуса LSFAQ42C			٠		•		•			•	
Фанкойлы канальные 2-трубные низконапорные LSFDR22L			•		•		•		•		-
Фанкойлы канальные 2-трубные низконапорные LSFDR22	9		•		•		-		•		-
Фанкойлы канальные 2-трубные средненапорные LSFDR22H	1		•		•		•		•		•
Фанкойлы канальные 4-трубные низконапорные LSFDN42L			•		•		•		•		•
Фанкойлы канальные 4-трубные низконапорные LSFDG42			•		•		•		•		٠
Фанкойлы канальные 4-трубные средненапорные LSFDG42H			•		•		•		•		•
Фанкойлы средненапорные канальные 2-трубные LSFDD22H(E)											

					КОДЬ	І ПРОИЗВ	ОДИТЕЛЬ	НОСТИ						
650	700	750	800	850	900	950	1000	1200	1400	1500	1600	1800	2200	№ стр.
														14
														16
														18
														20
		•		•		•		•		•				22
		٠		٠		•		٠		٠				24
		٠	٠											26
-		•	•											28
	٠													30
•		•												32
•		•												34
	•		•				•	•						36
	•		•				•	•	•					38
	•		•				•	•	•					40
			•				•	•	•					42
			•				•	•						44
			•				•	•						46
			•				•	•				•	•	48

LESSAR PROF ФАНКОЙЛЫ

Пользуются широким спросом следующие модели фанкойлов:

- Модели компактных 2-трубных LSF-...BP22C и 4-трубных LSF-...BP42C кассетных фанкойлов, а также модели 2-трубных LSF-...BM22 и 4-трубных LSF-...BM42 кассетных фанкойлов имеют в своем составе встроенные контакты для сетевого подключения, что предоставляет возможность управлять фанкойлами с центрального пульта управления либо по протоколу Modbus RTU в системах BMS.
- Настенные 2-трубные фанкойлы серии LSF-... КН22 с эстетичным и привлекательным дизайном, встроенным запорно-регулирующим узлом с поддержкой протокола Modbus RTU.
- Канальные фанкойлы скрытого монтажа серий LSF-...DD22H(E) (2-трубные) и LSF-...DG42 (4-трубные) - рациональное решение для помещений сложной конфигурации и там, где системы кондиционирования не должны быть заметны в дизайне интерьера.
- Модельный ряд канальных 2-трубных фанкойлов LSF-...DR22L, LSF-...DR22, LSF-...DR22H с более низким электропотреблением, со сниженным уровнем звукового давления и уменьшенными массогабаритными показателями позволяет экономить электроэнергию, создавать более комфортные условия в помещениях. Удобство при монтаже данных фанкойлов обеспечивается за счет возможности изменить сторону подключения труб хладоносителя и расположение клеммной колодки непосредственно на месте монтажа.

- 4-трубные канальные фанкойлы LSF-...DN42L с внешним статическим давлением 12 Па.
- Модельный ряд 2-трубных напольно-потолочных фанкойлов LSF-...AQ22 в корпусе, LSF-...AQ22C без корпуса со сниженным уровнем звукового давления на низкой скорости вращения вентилятора в ночное время обеспечивает более комфортное пребывание в номерах отелей; 4-трубные LSF-...AQ42 с фронтальным забором воздуха, LSF-...AQ42A в корпусе и LSF-...AQ42C без корпуса позволяют изменять режим работы фанкойла (охлаждение/нагрев) для самых требовательных постояльцев отелей высокого класса обслуживания.

Удобным решением остаются комплекты запорнорегулирующих узлов для фанкойлов:

- Набор компонентов для самостоятельной сборки
- Также для тех, кто желает получить более экономичный вариант, есть возможность поставки с фанкойлом комплекта LZ-V2(4), состоящего только из клапана и привода.

Маркировка фанкойлов

- L торговая марка LESSAR
- S внутренний блок
- F фанкойл
- Тип мотора вентилятора
 - _ с АС-мотором вентилятора
 - Е с DC-мотором вентилятора
- Код производительности
- Тип блока
 - К настенный
 - В кассетный
 - D канальный
 - А напольный и напольно-потолочный

- Модельный ряд
- Тип системы
 - 2 2-трубная система
 - 4 4-трубная система
- Тип электропитания
 - 2 220 В / 50 Гц / 1 фаза
 - 4 380 В / 50 Гц / 3 фазы
- 10 С компактная модель/скрытая модель
 - H средненапорная модель (50, 70, 100 Па)
 - L низконапорная модель (12 Па)
 - _ низконапорная модель (30 Па)
- 11 Е электроподогрев (опция)

Объекты LESSAR PROF

Фанкойлы

ОБЪЕКТЫ ТОРГОВЛИ:

- Гипермаркет «Лента», Пенза
- ТРЦ «Максимир», Воронеж
- ТРЦ «Гринвич», Екатеринбург
- TPЦ «VEER MALL», Екатеринбург
- ТРЦ «Победа Плаза», Саратов
- ТРЦ «Планета», Уфа
- ТРЦ «Планета», Красноярск
- ТРЦ «Мега», Уфа
- ТРЦ «ЮГРАМОЛЛ», Нижневартовск.
- ТРК «Планета», Пермь
- ТРК «Семья», Пермь
- ТРК «Матрёшка», Тюмень
- ТЦ «ЦУМ», Воронеж
- ТЦ «Мега», Омск
- ТЦ «Искра», Пермь
- ТЦ «Галерея Чижова», Воронеж
- ТЦ «Аура», Ярославль
- МФЦ «Эспланада», Пермь
- МФЦ «Атмосфера», Воронеж

ПРОМЫШЛЕННЫЕ ПРЕДПРИЯТИЯ:

- Воронежский шинный завод, Воронеж
- Воронежросагро, Воронеж

ЖИЛЫЕ КОМПЛЕКСЫ:

- ЖК «Идель Тауэр», Уфа
- ЖК «Волга Скай», Саратов
- ЖК «Алые паруса», Санкт-Петербург

БИЗНЕС ЦЕНТРЫ:

- БЦ «Романовский», Воронеж
- БЦ «Энергия», Воронеж
- БЦ «Бонус», Пермь

ОТЕЛИ:

- «Гранд отель», Астрахань
- Парк отель «ЛетоЛето», Тюмень
- Гостиница «Ласточка», Ярославль

АЭРОПОРТЫ, ВОКЗАЛЫ:

- Аэропорт им. Ю. А. Гагарина, Оренбург
- Аэропорт, Белгород
- Речной вокзал, Пермь

МАГАЗИНЫ:

- Сеть магазинов «Дочки сыночки», Екатеринбург
- Сеть магазинов «Кари», Волгоград
- Сеть магазинов «Снежная Королева», Волгоград

СПОРТИВНЫЕ ЗДАНИЯ:

■ Физкультурно-оздоровительный комплекс, Валдай

■ Полный перечень объектов — на официальном сайте lessar.com.

Фанкойлы LSF-...KH22

настенные двухтрубные

Полное описание систем управления — на стр. 53-57.

2-трубный фанкойл

Групповой контроль

Современный эстетичный дизайн корпуса позволяет настенному фанкойлу с легкостью найти себе место в помещении с любым интерьером, а встроенные запорно-регулирующий узел и контакты для сетевого подключения существенно упростят монтаж и сэкономят время на установку.

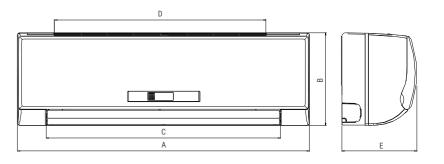
Особенности

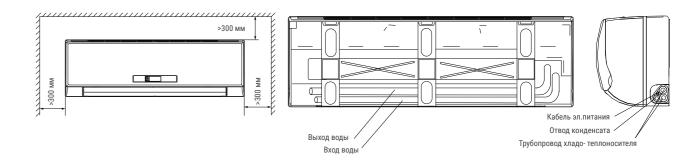
- Эстетичный дизайн корпуса.
- Сдвоенные жалюзи обеспечивают равномерное распределение воздушного потока.
- Радиальный вентилятор для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Встроенный запорно-регулирующий узел.
- Легкосъемный воздушный фильтр.
- Встроенные контакты для сетевого подключения.
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Информационный LED-дисплей.
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).

Опции

- Пульт управления LZ-KNP беспроводной.
- Пульт управления LZ-HJPW проводной сенсорный.
- Пульт управления LZ-UPHW проводной.
- Пульт управления LZ-UPW7 центральный сенсорный.

Технические характеристики –


		250KH22	300KH22	400KH22	500KH22	600KH22	
Холодопроизводительность	кВт	2,63	2,97	3,28	4,25	5,00	
Теплопроизводительность	кВт	3,36	3,91	4,37	5,81	6,70	
Потребляемая мощность	Вт	24	37	40	50	66	
Расход воды	л/ч	452	511	564	731	860	
Гидравлическое сопротивление	кПа	29,4	35,6	43,5	31,8	42,5	
Электропитание	ф/В/Гц			1/220/50			
Объем рециркулируемого воздуха	м³/ч	425	510	680	850	1020	
Максимальное рабочее давление воды	МПа			1,6			
Внутренний блок							
Размеры (Ш×В×Г)	MM		915×290×230		1072×3	315×230	
Упаковка (Ш×В×Г)	MM		1020×390×315		1180×4	415×315	
Масса нетто/брутто	КГ	13/	16,3	13,3/16,7	15,8/19,4		
Уровень звукового давления на высокой скорости	дБ(А)	30	35	37	39	40	
Уровень звукового давления на низкой скорости	дБ(А)	20	24	26	28	29	
Вход воды	дюйм			G 3/4"			
Выход воды	дюйм			G 3/4"			
Отвод конденсата	MM	Пластиковый патрубок OD Ø20					
Запорно-регулирующий узел				встроенный			


Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- Значения холодопроизводительности даны на высокой скорости вентиляторя при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.
 Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 70 °C.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм
LSF-250KH22	915	290	732	663	230
LSF-300KH22	915	290	732	663	230
LSF-400KH22	915	290	732	663	230
LSF-500KH22	1072	315	892	813	230
LSF-600KH22	1072	315	892	813	230

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...B1J22

кассетные однопоточные двухтрубные

Пульт управления LZ-UPW4 проводной

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Кассетные однопоточные фанкойлы предназначены для установки в помещениях с подвесными потолками. Благодаря конструктивным изменениям данная модель однопоточного фанкойла обладает улучшенными характеристиками и уменьшенной высотой, что дает возможность ее использования в условиях ограниченного пространства, а исполнение с однопоточным распределением воздушного потока позволяет размещать фанкойлы вблизи углов и стен помещения. Панель белоснежного цвета.

Особенности

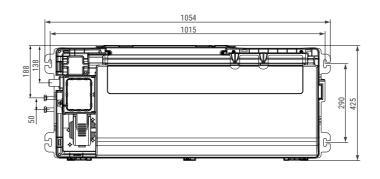
- Современный дизайн панели.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха в помещении.
- Компактная конструкция.
- Возможность установки в углах помещений в непосредственной близости от стен.
- Быстрое охлаждение или нагрев за счет однонаправленного потока воздуха.
- Сверхтонкий корпус.
- Простая система крепления.
- Прекрасно подходит для установки в помещениях малой площади.
- Встроенный дренажный насос; высота подъема воды 750 мм
- Фильтр съемный воздушный для быстрого и простого обслуживания.
- Функция сохранения последних настроек в случае перебоев с электроэнергией (AutoRestart).

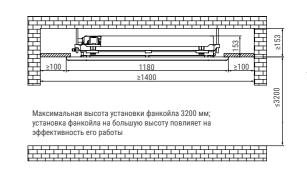
- Возможность группового контроля (управление до 64 фанкойлами с одного пульта или LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

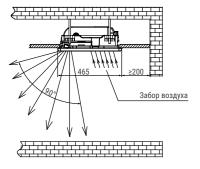
Опции

- Пульт управления LZ-KNP беспроводной.
- Пульт управления LZ-HJPW проводной сенсорный.
- Пульт управления LZ-UPHW проводной.
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-UDNW).
- Контроллер LZ-UDNW.

Технические характеристики –


		300B1J22	400B1J22		
Холодопроизводительность	кВт	3,04	3,79		
Теплопроизводительность	кВт	5,13	6,41		
Потребляемая мощность	Вт	32	40		
Расход воды	л/ч	520	650		
Гидравлическое сопротивление	кПа	14	20		
Электропитание	ф/В/Гц	1/22	0/50		
Объем рециркулируемого воздуха	м³/ч	510	630		
Максимальное рабочее давление воды	МПа	1,	6		
Размеры (Ш×В×Г)	MM	1054×1	55×428		
Упаковка (Ш×В×Г)	MM	1155×245×490			
Масса нетто/брутто	КГ	12,8,	/16,6		
Уровень звукового давления на высокой скорости	дБ(А)	36	37		
Уровень звукового давления на низкой скорости	дБ(А)	32	34		
Размеры (Ш×В×Г)	MM	1180×2	25×465		
Упаковка (Ш×В×Г)	MM	1232×1	07×517		
Масса нетто/брутто	КГ	3,5,	/5,2		
Вход/выход воды	дюйм	G 1	/2"		
Отвод конденсата	MM	Пластиковый патрубок OD Ø25			
Запорно-регулирующий узел		ЗРУ-Р4.01-2 или З	РУ-Р2.81-1, стр. 50		


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру; — температура воды на входе/выходе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
 - температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 70 °C.

Габаритные размеры

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

ФАНКОЙЛЫ КАССЕТНЫЕ КОМПАКТНЫЕ **LESSAR PROF**

Фанкойлы LSF-...BP22C

кассетные двухтрубные компактные

7-стороннее распределение воздушного потока

Пульт управления LZ-KNP беспроводной

Тульт vправления LZ-HJPW проводной сенсорный

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Кассетные компактные фанкойлы предназначены для установки в помещениях с подвесными потолками. 7-стороннее распределение воздушного потока обеспечивает равномерную обработку воздуха. Благодаря возможности встроить фанкойл в ячейку стандартного евроразмера (600×600 мм), расположению в любой удобной части потолка и установке, позволяющей скрыть основные элементы фанкойла, кассетные компактные фанкойлы являются отличным решением для современных интерьеров.

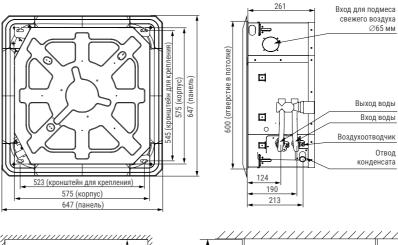
Кассетные компактные фанкойлы имеют встроенные контакты для сетевого подключения, что предоставляет возможность управлять фанкойлами с центрального пульта управления либо по протоколу Modbus RTU в системах BMS.

Особенности

- 7-стороннее распределение воздушного потока.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха.
- Совместимость с высокими потолками, что позволяет устанавливать их в холлах и фойе.
- Варианты распределения воздушного потока (изменение количества сторон распределения)
- Евроразмер. Встраивается в ячейку 600×600 мм.
- Возможность подмеса свежего воздуха.
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55-57).
- Функция сохранения последних настроек в случае перебоев с электроэнергией (AutoRestart).
- Встроенный дренажный насос, высота подъема воды 500 мм.

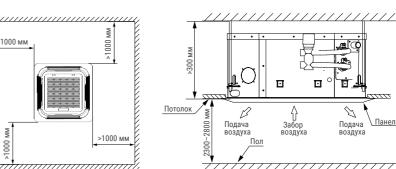
- Съемный воздушный фильтр для легкого обслужива-
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

Опции


- Пульт управления LZ-KNP беспроводной.
- Пульт управления LZ-HJPW проводной сенсорный.
- Пульт управления LZ-UPHW проводной.
- Пульт управления LZ-UPW7 центральный сенсорный.
- Дренажный поддон LZ-BDD42 (C) описание см. на стр. 51.

Технические характеристики –

		300BP22C	400BP22C	500BP22C			
Холодопроизводительность	кВт	3,0	3,7	4,5			
Теплопроизводительность	кВт	4,0	5,1	6,0			
Потребляемая мощность	Вт	50	70	95			
Расход воды	л/ч	522	642	774			
Гидравлическое сопротивление	кПа	14	15	16			
Электропитание	ф/В/Гц		1/220/50				
Объем рециркулируемого воздуха	м³/ч	510	680	850			
Максимальное рабочее давление воды	МПа	1,6	1,6	1,6			
Размеры (Ш×В×Г)	MM		575×261×575				
Упаковка (Ш×В×Г)	MM	670×290×670					
Масса нетто/брутто	КГ		16,5/20,0				
Уровень звукового давления на высокой скорости	дБ(А)	36	42	45			
Уровень звукового давления на низкой скорости	дБ(А)	28	32	34			
Размеры (Ш×В×Г)	MM		647×50×647				
Упаковка (Ш×В×Г)	MM		715×123×715				
Масса нетто/брутто	КГ		2,6/4,7				
Вход воды	дюйм		G 3/4"	<u> </u>			
Выход воды	дюйм		G 3/4"				
Отвод конденсата	MM	Пластиковый патрубок OD Ø25					
Дополнительный поддон		LZ-BDD42 (C)					
Запорно-регулирующий узел			ЗРУ-P4.02-2 или ЗРУ-P2.82-1, стр. 50				


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру; — температура воды на входе/выходе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора. при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 70 °C.

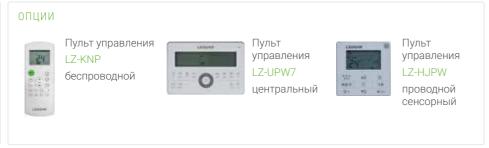
Габаритные размеры

Внимание!

Расположение 3-ходового вентиля указано для примера 3-ходовой вентиль не входит в стандартную комплектацию оборудования.

LESSAR PROF ФАНКОЙЛЫ КАССЕТНЫЕ КОМПАКТНЫЕ

Фанкойлы LSF-...BP42C


кассетные четырехтрубные компактные

7-стороннее распределение воздушного потока

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Кассетные компактные фанкойлы предназначены для установки в помещениях с подвесными потолками. 7-стороннее распределение воздушного потока обеспечивает равномерную обработку воздуха. Благодаря возможности встроить фанкойл в ячейку стандартного евроразмера (600×600 мм), расположению в любой удобной части потолка и установке, позволяющей скрыть основные элементы фанкойла, кассетные компактные фанкойлы являются отличным решением для современных интерьеров.

Кассетные компактные фанкойлы имеют встроенные контакты для сетевого подключения, что предоставляет возможность управлять фанкойлами с центрального пульта управления либо по протоколу Modbus RTU в системах BMS.

Особенности

- Четырехтрубная система позволяет одновременно подключать фанкойл к источникам тепла и холода.
- 7-стороннее распределение воздушного потока.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха.
- Варианты распределения воздушного потока (изменение количества сторон распределения).
- Евроразмер. Встраивается в ячейку 600×600 мм.
- Возможность группового контроля (до 64 фанкойлов с одного центрального пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подмеса свежего воздуха.
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).
- Встроенная под кожух плата управления.

- Встроенный дренажный насос, высота подъема воды 500 мм.
- Съемный воздушный фильтр для легкого обслуживания.
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

Опции

- Пульт управления LZ-KNP беспроводной.
- Пульт управления LZ-HJPW проводной сенсорный.
- Пульт управления LZ-UPHW проводной.
- Пульт управления LZ-UPW7 центральный сенсорный.
- Дренажный поддон LZ-BDD42 (C) описание см. на стр. 51.

Технические характеристики —

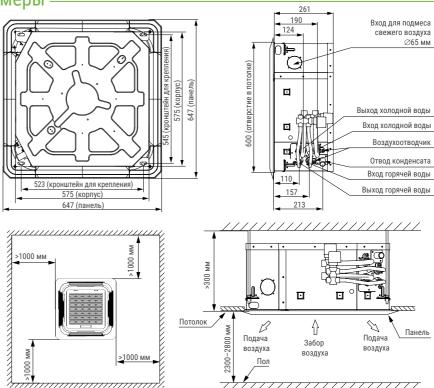
			300BP42C	400BP42C	500BP42C			
Холодопроизводит	ельность	кВт	2,5	2,9	3,5			
Теплопроизводител	ЛЬНОСТЬ	кВт	3,7	5,1				
Потребляемая моц	ЦНОСТЬ	Вт	50	95				
Dooyon poni	Охлаждение	л/ч	430	499	602			
Расход воды	Обогрев	л/ч	318	396	438			
Гидравлическое	Охлаждение	кПа	22	16	24			
сопротивление	Обогрев	кПа	17	23	27			
Электропитание		ф/В/Гц		1/220/50				
Объем рециркулиру	уемого воздуха	м³/ч	510	680	850			
Максимальное раб	очее давление воды	МПа	1,6	1,6	1,6			
Внутренний блок								
Размеры (Ш×В×Г) мм			575×261×575					
Упаковка (Ш×В×Г)		MM		670×290×670				
Масса нетто/брутто	0	КГ		16,5/20				
Уровень звукового скорости	давления на высокой	дБ(А)	36	42	45			
Уровень звукового скорости	давления на низкой	дБ(А)	28	32	34			
Размеры (Ш \times В \times Г)		MM		647×50×647				
Упаковка ($\mathbb{H} \times \mathbb{B} \times \Gamma$)		MM		715×123×715				
Масса нетто/брутто	0	КГ		2,6/4,7				
Соединительные тр	убы							
Вход/выход холодн	юй воды	дюйм		G 3/4"				
Вход/выход горячей воды дюйм			G 1/2"					
Отвод конденсата		MM	Пластиковый патрубок OD Ø25					
Дополнительный п	оддон		LZ-BDD42 (C)					
Запорно-регулирую	ощий узел		ЗРУ-Р4.02-2 или ЗРУ-Р2.82-1 (для трубопровода хладоносителя) / ЗРУ-Р4.04-2 или ЗРУ-Р2.84-1 (для трубопровода теплоносителя), стр. 50					

Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру; — температура воды на входе/выходе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:

Внимание!

оборудования.


Расположение 3-ходового

вентиля указано для примера 3-ходовой вентиль не входит

в стандартную комплектацию

- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70°C;
- расход воздуха такой же, как в режиме охлаждения.
 Максимальная температура горячей воды на входе 70 °С.

Габаритные размеры

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

ФАНКОЙЛЫ КАССЕТНЫЕ **LESSAR PROF**

Фанкойлы LSF-...BM22

кассетные двухтрубные

с 7-сторонним распределением воздушного потока

Пульт управления

Пульт управления LZ-UPHW проводной

Пульт

управления LZ-UPW7 центральный

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Кассетные фанкойлы предназначены для размещения в помещениях с подвесными потолками. Равномерное распределение и более интенсивное перемешивание воздушного потока обеспечиваются за счет поворота жалюзи от электропривода, встроенного в панель белоснежного цвета.

Встроенные контакты для сетевого подключения предоставляют возможность управлять фанкойлами с центрального пульта управления либо по протоколу Modbus RTU в системах BMS.

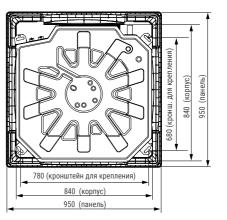
Особенности

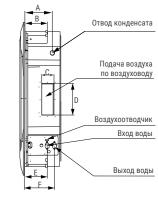
- Встроенные контакты для сетевого подключения.
- Совместимость с высокими потолками. Фанкойлы могут располагаться на высоте до 3,5 метров, что позволяет устанавливать их в холлах и фойе
- Варианты распределения воздушного потока (изменение количества сторон распределения).
- Возможность группового контроля (до 64 фанкойлов с одного центрального пульта LZ-UPW7) (подробнее на стр. 55-57).
- Информационный LED-дисплей.
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).
- Съемный воздушный фильтр для легкого обслуживания

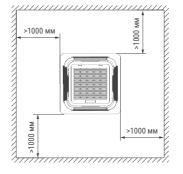
- Встроенный дренажный насос, высота подъема воды —
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

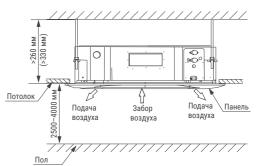
Опции

- Пульт управления LZ-KNP беспроводной.
- Пульт управления LZ-HJPW проводной сенсорный.
- Пульт управления LZ-UPHW проводной.
- Пульт управления LZ-UPW7 центральный сенсорный.
- Дренажный поддон LZ-BDD42 описание см. на стр. 51.


Технические характеристики —

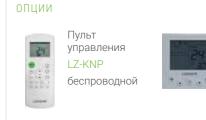

Фанкойл LSF-		600BM22	750BM22	850BM22	950BM22	1200BM22	1500BM22	
Холодопроизводительность	кВт	5,7	7,00	7,27	8,22	10,39	12,87	
Теплопроизводительность	кВт	9,66	11,55	12,42	13,85	17,58	17,60	
Потребляемая мощность	Вт	125	130	150	155	190	190	
Расход воды	л/ч	980	1204	1250	1414	1787	2219	
Гидравлическое сопротивление	кПа	23,8	25,2	27,0	31,2	44,0	40,0	
Электропитание	ф/В/Гц			1/22	20/50			
Объем рециркулируемого воздуха	м³/ч	1000	2000	2550				
Максимальное рабочее давление воды	МПа			1	,6			
Внутренний блок								
Размеры (Ш \times B \times Г)	MM	840×2	30×840		840×3	00×840		
Упаковка (Ш × В × Г)	MM	900×2	60×900		900×3	30×900		
Масса нетто/брутто	КГ	25,0	/30,0	30,5/36,2 35,0/4				
Уровень звукового давления на высокой скорости	дБ(А)	45	46	47	48	49	50	
Уровень звукового давления на низкой скорости	дБ(А)	36	37	38	39	40	41	
Панель				LZ-f	PB2			
Размеры (Ш \times B \times Г)	MM			950×4	5×950			
Упаковка (Ш \times B \times Г)	MM			1035×9	0×1035			
Масса нетто/брутто	КГ			6	/9			
Соединительные трубы								
Вход воды	дюйм			RC	3/4"			
Выход воды	дюйм			RC	3/4"			
Отвод конденсата	MM			Пластиковый п	атрубок OD Ø32			
Дополнительный поддон				LZ-B	DD42			
Запорно-регулирующий узел				ЗРУ-Р4.02-2 или 3	РУ-Р2.82-1, стр. 50			


- Все данные предоставлены при нормальном атмосферном давлении воздуха. Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру; температура воды на входе/выходе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °С по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения. ■ Максимальная температура горячей воды на входе 70 °C.


Габаритные размеры

Модель	А, мм	В, мм	С,		Е, мм	F, мм
LSF-600/750BM22	180	140	85	350	145	195
LSF-850/950/1200/1500BM22	180	140	155	350	155	205

Фанкойлы LSF-...BM42


кассетные четырехтрубные

Дизайн панели с 7-сторонним распределением воздушного потока

Полное описание систем управления — на стр. 53-57.

4-трубный фанкойл

Групповой контроль

Кассетные фанкойлы предназначены для размещения в помещениях с подвесными потолками. Равномерное распределение и более интенсивное перемешивание воздушного потока обеспечиваются за счет поворота жалюзи от электропривода, встроенного в панель белоснежного цвета.

Встроенные контакты для сетевого подключения предоставляют возможность управлять фанкойлами с центрального пульта управления либо по протоколу Modbus RTU в системах BMS.

Особенности

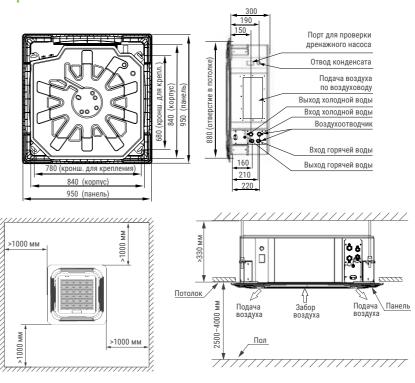
- Встроенные контакты для сетевого подключения.
- Четырехтрубная система позволяет одновременно подключать фанкойл к источникам хладо- и теплоносителя.
- Совместимость с высокими потолками. Фанкойлы могут располагаться на высоте до 3,5 м, что позволяет устанавливать их в холлах и фойе.
- Варианты распределения воздушного потока (изменение количества сторон распределения).
- Возможность группового контроля (до 64 фанкойлов с одного центрального пульта LZ-UPW7) (подробнее на стр. 55–57).
- Информационный LED-дисплей.
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).
- Съемный фильтр для легкого обслуживания.

- Встроенный дренажный насос, высота подъема воды 750 мм.
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

Опции

- Пульт управления LZ-KNP беспроводной.
- Пульт управления LZ-HJPW проводной сенсорный.
- Пульт управления LZ-UPHW проводной.
- Пульт управления LZ-UPW7 центральный сенсорный.
- Дренажный поддон LZ-BDD42 описание см. на стр. 51.

Технические характеристики —


			600BM42	750BM42	850BM42	950BM42	1200BM42	1500BM42					
Холодопроизводите	ельность	кВт	5,10	5,93	6,17	6,70	9,28	10,58					
Теплопроизводител	1ьность	кВт	6,67	7,87	8,06	8,67	11,65	12,62					
Потребляемая мош	ļНОСТЬ	Вт	170	188	198	205	197	234					
Dooyon ponii	Охлаждение	л/ч	876	1020	1062	1152	1596	1818					
Расход воды	Обогрев	л/ч	574	677	693	746	1002	1085					
Гидравлическое	Охлаждение	кПа	15	17	20	22	32	38					
сопротивление	Обогрев	кПа	37	41	39	42	57	61					
Электропитание		ф/В/Гц			1/22	20/50							
Объем рециркулиру	уемого воздуха	м³/ч	1150	1460	1480	1720	1860	2100					
Максимальное раб	очее давление воды	МПа			1	,6							
Внутренний блок													
Размеры (Ш × B × Г)	MM	MM 840×300×840										
Упаковка (Ш × В × Г	-)	MM			900×3	30×900							
Масса нетто/брутто)	КГ		35	/41		38	/44					
Уровень звукового скорости	давления на высокой	дБ(А)	42	44	46	47	48	50					
Уровень звукового скорости	давления на низкой	дБ(А)	26	28	30	32	34	36					
					LZ-I	PB2		48 50					
Размеры ($\mathbb{H} \times \mathbb{B} \times \Gamma$)		MM			950×4	15×950							
Упаковка (Ш × В × Г	-)	MM			1035×9	90×1035							
Масса нетто/брутто)	КГ			6	/9							
Соединительные тр	убы												
Вход/выход холодн	ой воды	дюйм			RC	3/4"							
Вход/выход горяче	й воды	дюйм	RC 1/2"										
Отвод конденсата		MM	м Пластиковый патрубок OD Ø32										
Дополнительный по	оддон		LZ-BDD42					61 2100 38/44 50					
Запорно-регулирую	ощий узел			3РУ-Р4.02-2 3РУ-Р4.04-2 или	или ЗРУ-Р2.82-1 (дл. ЗРУ-Р2.84-1 (для тр	я трубопровода хлад убопровода теплон	цоносителя) / осителя), стр. 50						

Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70 °C;
- расход воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 70 °C.

Габаритные размеры

Фанкойлы LSF-...AQ22

напольно-потолочные двухтрубные в корпусе

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Данные фанкойлы предназначены для установки на пол, вдоль стены или под потолок. Такие способы размещения значительно упрощают последующее обслуживание и эксплуатацию. Помимо низкого уровня шума и удобства монтажа, модельный ряд напольно-потолочных фанкойлов обладает современным дизайном корпуса с глубиной всего 211 мм, что является универсальным решением для помещений различного назначения.

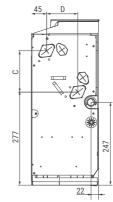
Особенности

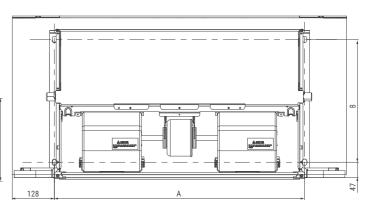
- Возможность монтажа на пол или под потолок.
- Фронтальный забор воздуха.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Сниженное гидравлическое сопротивление теплооб-
- Возможность подключения к системе BMS по сетевому протоколу ModBus RTU (подробнее на стр. 57).
- Возможность группового управления (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55-57).
- Компактные размеры (глубина 211 мм).

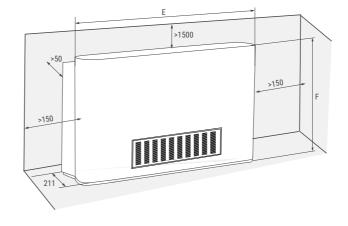
Опции

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM22.
- Пульт управления LZ-KNP беспроводной (совместно c LZ-FMM22).
- Пульт управления LZ-UQPW2 проводной (встраивается в корпус фанкойла).
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UPHW проводной (совместно
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FMM22).
- Опора LZ-FQL2 для установки на пол.

Технические характеристики -


			150AQ22	200AQ22	250AQ22	300AQ22	400AQ22	450AQ22	500AQ22	550AQ22	600AQ22	650AQ22	750AQ22	800AQ22
Холодопроизводите	ельность	кВт	1,58	2,16	2,51	2,72	3,75	4,09	4,59	5,21	5,29	6,16	6,22	6,66
Теплопроизводител	1ьность	кВт	1,77	2,26	2,80	2,81	3,99	4,19	5,13	5,33	5,42	6,53	6,94	6,86
Потребляемая мош	НОСТЬ	Вт	35	40	47	47	51	51	91	92	124	117	118	110
Расход воды		л/ч	270	370	430	470	640	700	790	890	910	1060	1070	1140
Гидравлическое	Охлаждение	кПа	15,1	31,9	17,1	23,9	37,3	40,1	56,1	59,9	47,5	36,8	38,4	52,3
сопротивление	Обогрев	кПа	15,0	31,9	16,6	22,5	34,6	36,3	56,0	59,4	51,0	38,5	40,7	50,0
Электропитание		ф/В/Гц						1/22	0/50					
Объем рециркулиру	емого воздуха	м³/ч	245	245	380	380	580	580	780	780	1050	1050	1100	1050
Максимальное раб	очее давление воды	МПа	1,6											
Размеры ($\mathbb{H} \times \mathbb{B} \times \Gamma$)		MM	790×49	95×211	1020×4	195×211		1240×4	95×211		1360×4	195×211	1360×5	91×211
Упаковка ($\mathbb{U} \times \mathbb{B} \times \Gamma$)		MM	895×595×300 1125×595×300				1345×5	95×300		1465×5	95×300	1465×6	95×300	
Масса нетто/брутто)	КГ	16,3/21,8	16,7/22,7	20,0/26,8	20,8/26,8	24,0/31,0	25,4/32,4	25,5/32,0	26,3/33,4	27,3/34,8	28,5/36,0	31,7/40,2	34,0/42,0
Уровень звукового скорости	давления на высокой	дБ(А)	34	39	34	35	39	39	48	48	52	52	53	53
Уровень звукового на низкой скорости		дБ(А)	21	26	19	20	24	24	30	30	33	34	39	39
Вход воды		дюйм						G 3	3/4"					
Выход воды	Выход воды			M G 3/4"										
Отвод конденсата	MM	м Пластиковый патрубок OD Ø18,5												
Запорно-регулирую	щий узел						3PY-P4.	.05-2 или 3	PY-P2.85-1	, стр. 50				


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
 температура воздуха на входе 19 °C по влажному термометру;
- температура волы на вхоле/выхоле 7/12 °C. Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 45 °C:
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 75 °C.

Габаритные размеры

Модель	А, мм	В,	С,	D, мм	Е,	F, мм
LSF-150AQ22	534	375	123	93	790	495
LSF-200AQ22	534	375	123	93	790	495
LSF-250AQ22	764	375	123	93	1020	495
LSF-300AQ22	764	375	123	93	1020	495
LSF-400AQ22	984	375	123	93	1240	495
LSF-450AQ22	984	375	123	93	1240	495
LSF-500AQ22	984	375	123	93	1240	495
LSF-550AQ22	984	375	123	93	1240	495
LSF-600AQ22	1104	375	123	93	1360	495
LSF-650AQ22	1104	375	123	93	1360	495
LSF-750AQ22	1104	391	219	102	1360	591
LSF-800AQ22	1104	391	219	102	1360	591

Фанкойлы LSF-...AQ22C

напольно-потолочные двухтрубные без корпуса

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Данные фанкойлы предназначены для установки на пол или под потолок в пристенном или подпотолочном пространстве. Помимо низкого уровня шума и удобства монтажа, новый модельный ряд напольно-потолочных фанкойлов обладает современным дизайном корпуса с глубиной всего 200 мм, что является универсальным решением для помещений различного назначения.

Особенности

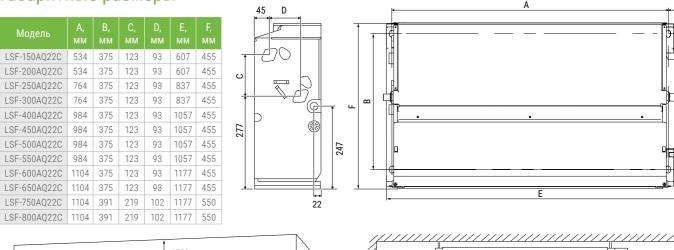
- Возможность вертикальной установки у стен или горизонтальной установки под потолок.
- Мощный воздушный поток: фанкойл направляет сильную струю воздуха вверх вдоль стены или потолка.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Сниженное гидравлическое сопротивление теплообменника.
- Возможность подключения к системе BMS по сетевому протоколу ModBus RTU (подробнее на стр. 57).
- Возможность группового управления (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Компактные размеры (глубина 200 мм).

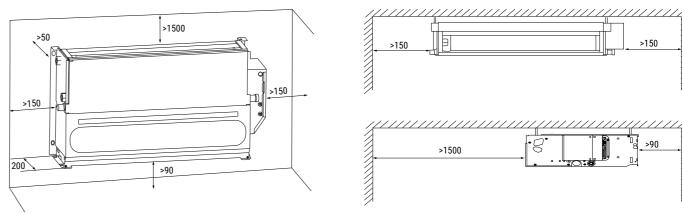
Опции

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM22.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM22).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM22).
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FMM22).

Технические характеристики

Фанкойл LSF-			150AQ22C	200AQ22C	250AQ22C	300AQ22C	400AQ22C	450AQ22C	500AQ22C	550AQ22C	600AQ22C	650AQ22C	750AQ22C	800AQ22C	
Холодопроизводите	Р.ЛЬНОСТЬ	кВт	1,65	2,25	2,65	3,05	3,85	4,20	4,65	5,35	6,00	6,75	7,35	8,25	
Теплопроизводител	ьность	кВт	1,85	2,35	3,05	3,15	4,10	4,30	5,20	5,70	6,15	7,15	8,20	8,50	
Потребляемая мощ	ность	Вт	35	40	47	47	51	51	91	91	123	110	123	118	
Расход воды		л/ч	283	386	454	523	660	720	797	917	1029	1157	1260	1414	
Гидравлическое	Охлаждение	кПа	15,75	33,19	18,03	26,71	38,23	41,15	56,85	61,48	53,79	40,26	45,43	64,72	
сопротивление	Обогрев	кПа	15,13	33,19	17,56	23,31	35,52	37,20	56,68	60,89	57,85	42,16	44,60	61,96	
Электропитание		ф/В/Гц						1/22	0/50						
Объем рециркулиру	емого воздуха	м³/ч	255	255	400	425	595	595	790	800	1190	1150	1300	1300	
Максимальное рабо	очее давление воды	МПа		1,6											
Внешнее статическ	ое давление	Па						1	2						
Размеры ($\mathbb{U} \times \mathbb{B} \times \Gamma$)		MM	607×45	55×200	837×4	55×200		1057×4	55×200		1177×4	55×200	1177×5	1177×550×200	
Упаковка (Ш×В×Г)		MM	755×5	55×255	985×555×255 1205×555×255			1325×5	55×255	1325×6	50×255				
Масса нетто/брутто)	КГ	11,6/15,9	12,0/16,3	13,9/19,4	14,8/20,3	17,3/24,0	18,2/24,9	17,9/24,6	18,8/25,5	20,5/27,3	21,7/28,5	24,0/31,1	25,2/32,3	
Уровень звукового скорости	давления на высокой	дБ(А)	35	42	34	34	39	40	48	47	50	50	51	50	
Уровень звукового на низкой скорости		дБ(А)	21	27	18	19	23	31	31	31	33	33	36	37	
Вход воды		дюйм						G 3	3/4"						
Выход воды	Выход воды			G 3/4"											
Отвод конденсата	MM	л Пластиковый патрубок OD ∅18,5													
Запорно-регулирую	щий узел						3РУ-Р4.	05-2 или 3	РУ-Р2.85-1	I, стр. 50					


Примечания


при условиях

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 29 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C. — внешнее статическое давление воздуха 12 Па
- Шумовые данные получены замером в полубезэховой комнате.

- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 45 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 75 °C.

Габаритные размеры

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Фанкойлы LSF-...AQ42

напольно-потолочные четырехтрубные в корпусе

Полное описание систем управления — на стр. 53-57.

Данные фанкойлы предназначены для установки на пол или под потолок в пристенном или подпотолочном пространстве. Помимо низкого уровня шума и удобства монтажа, новый модельный ряд напольно-потолочных фанкойлов обладает современным дизайном корпуса с глубиной всего 211 мм, что является универсальным решением для помещений различного назначения.

Особенности

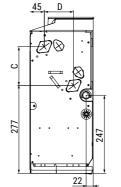
- Фронтальный забор воздуха.
- Эстетичный дизайн корпуса.
- Возможность монтажа на пол или под потолок.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Компактные размеры (глубина 211 мм).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

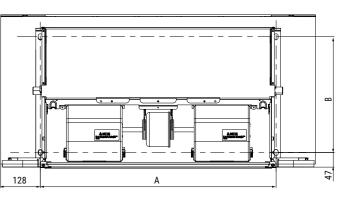
Опции

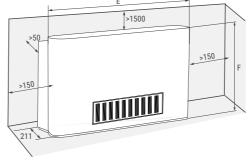
- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM42.
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM42).
- Пульт управления LZ-UQPW2 проводной (встраивается в корпус фанкойла).
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM42).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM42).
- Пульт управления LZ-UPW7 центральный (совместно с LZ-FMM42).
- Опора LZ-FQL2 для установки на пол.

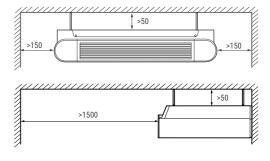
Технические характеристики –

Фанкойл LSF-			150AQ42	250AQ42	350AQ42	500AQ42	600AQ42	700AQ42					
Холодопроизводите	ельность	кВт	1,87	2,58	3,99	4,92	5,84	6,18					
Теплопроизводител	1ьность	кВт	1,62	2,19	2,88	3,55	4,25	5,90					
Потребляемая мош	ļНОСТЬ	Вт	40	47	51	92	117	110					
D.	Охлаждение	л/ч	320	440	680	840	1000	1060					
Расход воды	Обогрев	л/ч	140	190	250	310	370	510					
Гидравлическое	Охлаждение	кПа	26,4	19,1	46,5	69,3	57,6	40,8					
сопротивление	Обогрев	кПа	15,0	28,6	56,7	80,0	123,45	54,8					
Максимальное раб	очее давление воды	МПа	1,6										
Электропитание		ф/В/Гц			1/22	0/50							
Объем рециркулиру	уемого воздуха	м³/ч	245	380	580	780	1050	1050					
Внешнее статическ	ое давление	Па			()							
Количество вентил	нешнее статическое давление оличество вентиляторов		1	2	2	2	3	3					
Уровень звукового на высокой скорос		дБ(А)	39	35	39	48	52	52					
Уровень звукового на низкой скорости		дБ(А)	26	20	24	30	34	39					
Внутренний блок													
Размеры ($\mathbb{H} \times \mathbb{B} \times \Gamma$)		MM	790×495×211	1020×495×211	1240×495×211	1240×495×211	1360×495×211	1360×591×211					
Упаковка (Ш×В×Г)		MM	895×595×300	1125×595×300	1345×595×300	1345×595×300	1465×595×300	1465×695×300					
Масса нетто		КГ	17,2	21,3	25,9	26,8	29	34,5					
Масса брутто		КГ	23,2	27,3	32,9	33,9	36,5	42,5					
Вход/выход холодн	ой воды	дюйм			G 3	3/4"							
Вход/выход горяче	й воды	дюйм			G 1	/2"							
Патрубок отвода др	ренажа	MM			Пластиковый па	трубок OD Ø18,5							
Запорно-регулирую	ощий узел				или ЗРУ-Р2.85-1 (для .76-1 (для трубопров								


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 27 °С по сухому термометру; — температура воздуха на входе 19 °С по влажному термометру;
- температура воды на входе/выходе 7/12 °C.


- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе/выходе 65/55 °С;. ■ Максимальная температура горячей воды на входе 75 °С.


Габаритные размеры

Модель	А, мм	В, мм	С,	D, мм	Е, мм	F, мм
LSF-150AQ42	534	375	123	93	790	495
LSF-250AQ42	764	375	123	93	1020	495
LSF-350AQ42	984	375	123	93	1240	495
LSF-500AQ42	984	375	123	93	1240	495
LSF-600AQ42	1104	375	123	93	1360	495
LSF-700AQ42	1104	391	219	102	1360	591

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...AQ42A

напольно-потолочные четырехтрубные в корпусе

Полное описание систем управления — на стр. 53-57.

Данные фанкойлы предназначены для установки на пол или под потолок. Помимо низкого уровня шума и удобства монтажа, новый модельный ряд напольно-потолочных фанкойлов обладает компактным размером корпуса с глубиной всего 200 мм.

Особенности

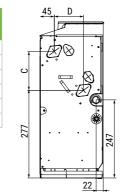
- Эстетичный дизайн корпуса.
- Возможность монтажа на пол или под потолок.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Компактные размеры (глубина 200 мм).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

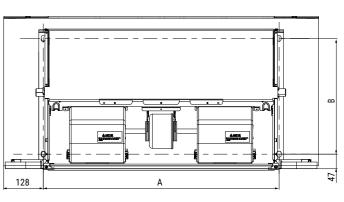
Опции

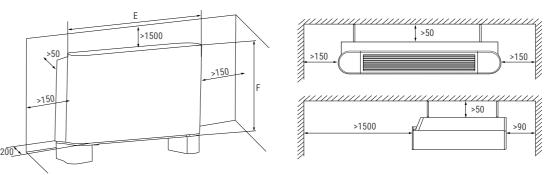
- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM42.
- Пульт управления LZ-UQPW2 проводной (встраивается в корпус фанкойла).
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM42).
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM42).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM42).
- Пульт управления LZ-UPW7 центральный (совместно с LZ-FMM42).
- Опора LZ-FQL2 для установки на пол.

Технические характеристики -

Фанкойл LSF-			200AQ42A	300AQ42A	400AQ42A	550AQ42A	650AQ42A	750AQ42A					
Холодопроизводите	ельность	кВт	1,95	2,89	4,09	5,05	6,40	7,65					
Теплопроизводител	1ьность	кВт	1,69	2,45	2,95	3,64	4,65	7,30					
Потребляемая мош	цность	Вт	40	47	51	91	110	118					
D	Охлаждение	л/ч	330	500	700	870	1100	1310					
Расход воды	Обогрев	л/ч	140	210	250	310	400	630					
Гидравлическое	Охлаждение	кПа	27,47	21,38	47,70	71,09	63,05	50,47					
сопротивление	Обогрев	кПа	15,60	31,95	58,17	82,01	135,21	67,86					
Максимальное раб	очее давление воды	МПа	la 1,6										
Электропитание		ф/В/Гц			1/22	0/50							
Объем рециркулиру	уемого воздуха	м³/ч	255	425	595	800	1150	1300					
Внешнее статическ	ое давление	Па			()							
Количество вентил	яторов	ШТ.	1	2	2	2	3	3					
Уровень звукового скорости	давления на высокой	дБ(А)	42	34	40	47	50	50					
Уровень звукового скорости	давления на низкой	дБ(А)	27	19	31	31	33	37					
Внутренний блок													
Размеры (Ш×В×Г)		MM	790×495×200	1020×495×200	1240×495×200	1240×495×200	1360×495×200	1360×591×200					
Упаковка (Ш×В×Г)		MM	895×595×300	1125×595×300	1345×595×300	1345×595×300	1465×595×300	1465×695×300					
Масса нетто		КГ	17,2	21,3	25,9	26,8	29,0	34,5					
Масса брутто		КГ	23,2	27,3	32,9	33,9	36,5	42,5					
Соединительные тр													
Вход/выход холодн	ой воды	дюйм			G 3	3/4"							
Вход/выход горяче	й воды	дюйм			G 1	/2"							
Патрубок отвода др	ренажа	MM	Пластиковый патрубок OD ∅18,5										
Запорно-регулирую	ощий узел				или ЗРУ-Р2.85-1 (для 76-1 (для трубопров								


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.


- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру; — температура воды на входе/выходе 65/55 °C;
- Максимальная температура горячей воды на входе 75 °C.

Габаритные размеры

Модель	А, мм	В, мм	С,	D, мм	Е,	F, мм
LSF-200AQ42A	534	375	123	93	790	495
LSF-300AQ42A	764	375	123	93	1020	495
LSF-400AQ42A	984	375	123	93	1240	495
LSF-550AQ42A	984	375	123	93	1240	495
LSF-650AQ42A	1104	375	123	93	1360	495
LSF-750AQ42A	1104	391	219	102	1360	591

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Фанкойлы LSF-...AQ42C

напольно-потолочные четырехтрубные без корпуса

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Данные фанкойлы предназначены для установки на пол или под потолок в пристенном или подпотолочном пространстве. Помимо низкого уровня шума и удобства монтажа, новый модельный ряд напольно-потолочных фанкойлов обладает компактным размером корпуса с глубиной всего 200 мм. А возможность скрытого монтажа является универсальным решением для их применения в помещениях различного назначения и дизайна.

Особенности

- Возможность монтажа на пол или под потолок.
- Мощный воздушный поток: фанкойл направляет сильную струю воздуха вверх вдоль стены или потолка.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Компактные размеры (глубина 200 мм).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

Опции

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM42.
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM42).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM42).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM42).
- Пульт управления LZ-UPW7 центральный (совместно с LZ-FMM42).

Технические характеристики

Фанкойл LSF-			200AQ42C	300AQ42C	400AQ42C	550AQ42C	650AQ42C	750AQ42C					
Холодопроизводите	Р.ЛЬНОСТЬ	кВт	1,95	2,89	4,09	5,05	6,40	7,65					
Теплопроизводител	ьность	кВт	1,69	2,45	2,95	3,64	4,65	7,30					
Потребляемая мощ	НОСТЬ	Вт	40	47	51	91	110	118					
Daayan panu	Охлаждение	л/ч	330	500	700	870	1100	1310					
Расход воды	Обогрев	л/ч	140	210	250	310	400	630					
Гидравлическое	Охлаждение	кПа	27,47	21,38	47,70	71,09	63,05	50,47					
сопротивление	Обогрев	кПа	15,60	31,95	58,17	82,01	135,21	67,86					
Максимальное рабо	очее давление воды	МПа	МПа 1,6										
Электропитание		ф/В/Гц	1/220/50										
Объем рециркулиру	емого воздуха	М3/Ч	255	425	595	800	1150	1300					
Внешнее статическо	ое давление	Па			1	2							
Количество вентиля	яторов	ШТ.	1	2	2	2	3	3					
Уровень звукового скорости	давления на высокой	дБ(А)	42	34	40	47	50	50					
Уровень звукового , скорости	давления на низкой	дБ(А)	27	19	24 31		33	37					
Внутренний блок													
Размеры (Ш× В ×Г)		MM	607×455×200	837×455×200	1057×455×200	1057×455×200	1177×455×200	1177×550×200					
Упаковка (Ш×В×Г)	MM	895×595×300	1125×595×300	1345×595×300	1345×595×300	1465×595×300	1465×695×300					
Масса нетто		КГ	12,49	15,30	18,70	19,34	22,21	25,71					
Масса брутто		КГ	16,79	20,80	25,40	26,04	29,01	32,81					
Соединительные тр	убы												
Вход/выход холодн	ой воды	дюйм			G 3	3/4"							
Вход/выход горячей	і́ воды	дюйм	M G 1/2"										
Патрубок отвода др	енажа	MM	мм Пластиковый патрубок OD Ø18,5										
Запорно-регулирую	щий узел				ЗРУ-Р4.05-2 или ЗРУ-Р2.85-1 (для трубопровода хладоносителя) / ЗРУ-Р1.76-1 (для трубопровода теплоносителя), стр. 50								

Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.

 Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °С по влажному термометру;
- температура воды на входе/выходе 7/12 °C.
- внешнее статическое давление воздуха 12 Па

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе/выходе 65/55 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
 Максимальная температура горячей воды на входе 75 °C.

Габаритные размеры

							AE D			A .39	9
Модель	А, мм	В,	С,	D, мм	Е,	F, мм	45 D		1 + 9	 	_
LSF-200AQ42C	534	375	123	93	607	455	+40		1 [<i>(</i>
LSF-300AQ42C	764	375	123	93	837	455					9
LSF-400AQ42C	984	375	123	93	1057	455				_[إ
LSF-550AQ42C	984	375	123	93	1057	455		+		p	
LSF-650AQ42C	1104	375	123	93	1177	455		ш.	- 🗠 🖔		0
LSF-750AQ42C	1104	391	219	102	1177	550	277	247			
	_					>15	22	<u> </u>	-	E	
	-	>50 \ >150	E			*15	>150	-		>150 >150	
	2	200	0			>90		\		>1500	


Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...DR22L

канальные низконапорные двухтрубные

Полное описание систем управления — на стр. 53-57.

В данном модельном ряду канальных фанкойлов с внешним статическим давлением 12 Па используется трехрядный теплообменник с увеличенной площадью поверхности и дренажный поддон с наклоном в сторону дренажного патрубка для более эффективного отвода конденсата с теплообменника.

Канальные фанкойлы с более низким электропотреблением, со сниженным уровнем звукового давления и уменьшенными массогабаритными показателями позволяют экономить электроэнергию, создавать более комфортные условия в помещениях. Удобство при монтаже данных фанкойлов обеспечивается за счет возможности изменить сторону подключения труб хладоносителя и расположение клеммной колодки непосредственно на месте монтажа. Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами.

Особенности

- Подключение труб с правой или с левой стороны по предварительному заказу или на месте монтажа.
- Возможность подмеса наружного воздуха.
- Приемная камера с забором воздуха сзади в комплекте.
- Специальная конструкция крепления фильтра, позволяющая извлекать фильтр в горизонтальном или вертикальном направлении (опция).
- Компактная конструкция поддона для отвода конденсата.
- Возможность установки электронагревателя (опция).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

Исполнение

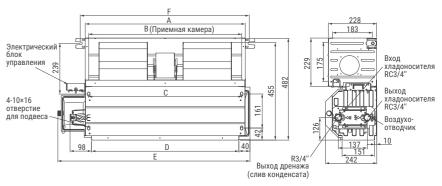
 LSF-...DR22LE — фанкойл со встроенным электронагревателем.

ОПЦИИ

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM22.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM22).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM22).
- Пульт управления LZ-UPW7 центральный (совместно с LZ-FMM22).
- Подключение трубопровода хладоносителя слева (стандартно) или справа (опционально) подробно см. на стр. 51.

Технические характеристики -

			200DR22L	300DR22L	400DR22L	500DR22L	600DR22L	700DR22L	800DR22L	1000DR22L	1200DR22L	1400DR22L
Холодопроизвод	ительность	кВт	2,35	3,40	4,41	5,00	6,00	7,05	8,03	9,00	11,20	13,00
Теплопроизводит	гельность	кВт	3,90	5,67	7,35	8,60	9,98	11,70	13,60	15,60	19,20	22,16
Потребляемая м	ощность	Вт	36	50	60	74	93	112	130	147	183	221
Расход воды	Охлаждение	л/ч	404	585	758	860	1032	1213	1381	1548	1927	2236
Гидравлическое	Охлаждение	кПа	24	24	24	30	38	28	40	38	40	50
сопротивление	Обогрев	кПа	20	20	20	24	31	23	32	31	32	40
Максимальное ра давление воды	абочее	МПа					1	,6				
Электропитание		ф/В/Гц					1/22	0/50				
Объем рециркули воздуха	ируемого	м³/ч	340	510	680	850	1020	1150	1360	1650	2040	2380
Внешнее статиче давление	ское	Па				,	1	2				
Количество вент	иляторов	ШТ.	1	2	2	2	2	2	3	3	4	4
Уровень звуково на высокой скоро		дБ(А)	35	39	41	43	45	46	46	48	50	52
Уровень звуково на низкой скорос		дБ(А)	23,5	26	24	28,5	31	30	30	33	33	34
Внутренний блок												
Размеры (Ш×В×	Γ)	MM	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×48
Упаковка (Ш×В×	:Γ)	MM	698×270×520	843×270×520	978×270×520	978×270×520	1073×270×520	1248×270×520	1438×270×520	1438×270×520	1728×270×520	1968×270×52
Масса нетто/мас	сса брутто	КГ	12,3/14,4	14,7/16,9	17,6/20,2	17,6/20,2	18,8/21,5	21,4/24,5	25,5/29,1	26,0/29,7	33,8/39,5	35,3/39,8
Соединительные	трубы											
Вход воды		дюйм					RC	3/4"				
Выход воды		дюйм					RC	3/4"				
Патрубок отвода	дренажа	дюйм					R 3	3/4"				
Запорно-регулир	ующий узел					ЗРУ	·P4.02-2 или 3	РУ-Р2.82-1, ст	p. 50			


Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- в значения холодопроизводительности даны на высокой скорости вентилятор
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19,5 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C. — внешнее статическое давление воздуха 12 Па

- Шумовые данные получены замером в полубезэховой комнате
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 21 °C по сухому термометру;
- температура воды на входе 60°C;
- расход воды и воздуха такой же, как в режиме охлаждения
- Максимальная температура горячей воды на входе 80 °С.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , м
LSF-200DR22L	475	443	443	415	627	513
LSF-300DR22L	620	588	588	560	772	658
LSF-400DR22L	755	723	723	695	907	79
LSF-500DR22L	755	723	723	695	907	79
LSF-600DR22L	850	818	818	790	1002	88
LSF-700DR22L	1025	993	993	965	1177	106
LSF-800DR22L	1215	1183	1183	1155	1367	125
LSF-1000DR22L	1215	1183	1183	1155	1367	125
LSF-1200DR22L	1505	1473	1473	1445	1657	154
LSF-1400DR22L	1745	1713	1713	1685	1897	178

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...DR22

канальные низконапорные двухтрубные

Полное описание систем управления — на стр. 53-57.

2-трубный фанкойл

Групповой контроль

В данном модельном ряду канальных фанкойлов с внешним статическим давлением 30 Па используется трехрядный теплообменник с увеличенной площадью поверхности и дренажный поддон с наклоном в сторону дренажного патрубка для более эффективного отвода конденсата с теплообменника.

Канальные фанкойлы с более низким электропотреблением, со сниженным уровнем звукового давления и уменьшенными массогабаритными показателями позволяют экономить электроэнергию, создавать более комфортные условия в помещениях. Удобство при монтаже данных фанкойлов обеспечивается за счет возможности изменить сторону подключения труб хладоносителя и расположение клеммной колодки непосредственно на месте монтажа. Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами.

Особенности

- Подключение труб с правой или с левой стороны по предварительному заказу или на месте монтажа.
- Возможность подмеса наружного воздуха.
- Приемная камера с забором воздуха сзади в комплекте.
- Специальная конструкция крепления фильтра, позволяющая извлекать фильтр в горизонтальном или вертикальном направлении (опция).
- Компактная конструкция поддона для отвода конденсата.
- Возможность установки электронагревателя (опция).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

Исполнение

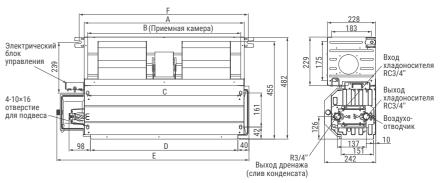
LSF-...DR22E — фанкойл со встроенным электронагревателем.

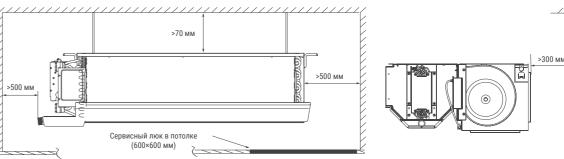
Опции

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM22.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM22).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UPHW проводной (совместно с17-FMM22)
- Пульт управления LZ-UPW7 центральный (совместно с LZ-FMM22).
- Подключение трубопровода хладоносителя слева (стандартно) или справа (опционально) подробно см. на стр. 51.

Технические характеристики -

Фанкойл LSF-			200DR22	300DR22	400DR22	500DR22	600DR22	700DR22	800DR22	1000DR22	1200DR22	1400DR22
Холодопроизвод	ительность	кВт	2,50	3,40	4,41	5,00	6,00	7,20	8,03	9,27	11,20	13,00
Теплопроизводи:	тельность	кВт	4,10	5,67	7,35	8,60	9,98	12,00	13,60	16,00	19,20	22,16
Потребляемая м	ребляемая мощность Вт 42 57 70 83 102 121 135 169 206 245 од воды Охлаждение л/ч 430 585 758 860 1032 1238 1381 1594 1927 2236 авлическое Охлаждение кПа 27 24 24 30 38 30 40 40 40 40 50 Обогрев кПа 22 20 20 24 31 24 32 32 32 40 Обогрев в кПа 22 20 20 24 31 24 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 32 40 Обогрев в кПа 22 20 20 20 24 31 24 32 32 32 32 32 32 32 32 32 32 32 32 32					245						
Расход воды	Охлаждение	л/ч	430	585	758	860	1032	1238	1381	1594	1927	2236
Гидравлическое	Охлаждение	кПа	27	24	24	30	38	30	40	40	40	50
сопротивление	Обогрев	кПа	22	20	20	24	31	24	32	32	32	40
Максимальное р давление воды	абочее	МПа					1,	,6				
Электропитание		ф/В/Гц					1/22	0/50				
Объем рециркулі воздуха	ируемого	м³/ч	340	510	680	850	1020	1190	1360	1700	2040	2380
Внешнее статиче давление	еское	Па					3	0				
Количество вент	иляторов	ШТ.	1	1	2	2	2	2	3	3	4	4
Уровень звуково на высокой скор		дБ(А)	37,0	40,5	40,5	42,0	43,0	46,0	44,5	47,0	48,0	49,5
Уровень звуково на низкой скорос		дБ(А)	23	26	26	27	27	31	33	35	35	36
Внутренний блок												
Размеры (Ш×В×	Γ)	MM	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×48
Упаковка (Ш×В×	(Γ)	MM	698×270×520	843×270×520	978×270×520	978×270×520	1073×270×520	1248×270×520	1438×270×520	1438×270×520	1728×270×520	1968×270×52
Масса нетто/ма	сса брутто	КГ	12,3/14,4	14,7/16,9	17,6/20,2	17,6/20,2	18,8/21,5	21,4/24,5	25,5/29,1	26,0/29,7	33,8/39,5	35,3/39,8
Вход воды		дюйм					RC:	3/4"				
Выход воды		дюйм					RC:	3/4"				
Патрубок отвода	дренажа	дюйм					R 3	3/4"				
Запорно-регулир	ующий узел					ЗРУ	Р4.02-2 или 3	РУ-Р2.82-1, ст	p. 50			


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19,5 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C. — внешнее статическое давление воздуха 30 Па

- Шумовые данные получены замером в полубезэховой комнате
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 21 °C по сухому термометру;
- температура воды на входе 60°C;
- расход воды и воздуха такой же, как в режиме охлаждения
- Максимальная температура горячей воды на входе 80 °С.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , м
LSF-200DR22	475	443	443	415	627	513
LSF-300DR22	620	588	588	560	772	658
LSF-400DR22	755	723	723	695	907	793
LSF-500DR22	755	723	723	695	907	793
LSF-600DR22	850	818	818	790	1002	888
LSF-700DR22	1025	993	993	965	1177	106
LSF-800DR22	1215	1183	1183	1155	1367	125
LSF-1000DR22	1215	1183	1183	1155	1367	125
LSF-1200DR22	1505	1473	1473	1445	1657	154
LSF-1400DR22	1745	1713	1713	1685	1897	178

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...DR22H

канальные средненапорные двухтрубные

Полное описание систем управления — на стр. 53-57.

2-трубный фанкойл

Групповой контроль

В данном модельном ряду канальных фанкойлов с внешним статическим давлением 50 Па используется трехрядный теплообменник с увеличенной площадью поверхности и дренажный поддон с наклоном в сторону дренажного патрубка для более эффективного отвода конденсата с теплообменника.

Канальные фанкойлы с более низким электропотреблением, со сниженным уровнем звукового давления и уменьшенными массогабаритными показателями позволяют экономить электроэнергию, создавать более комфортные условия в помещениях. Удобство при монтаже данных фанкойлов обеспечивается за счет возможности изменить сторону подключения труб хладоносителя и расположение клеммной колодки непосредственно на месте монтажа. Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами.

Особенности

- Подключение труб с правой или с левой стороны по предварительному заказу или на месте монтажа.
- Возможность подмеса наружного воздуха.
- Приемная камера с забором воздуха сзади в комплекте.
- Специальная конструкция крепления фильтра, позволяющая извлекать фильтр в горизонтальном или вертикальном направлении (опция).
- Компактная конструкция поддона для отвода конденсата
- Возможность установки электронагревателя (опция).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55-57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

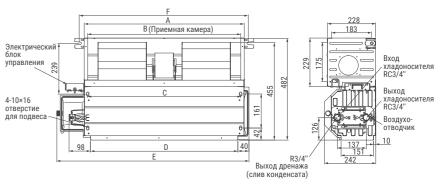
Исполнение

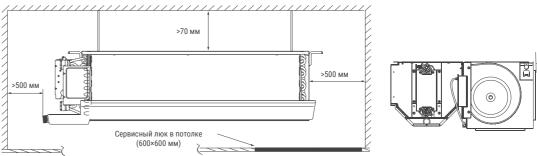
■ LSF-...DR22HE — фанкойл со встроенным электронагревателем.

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM22.
- Пульт управления LZ-KNP беспроводной (совместно
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UPHW проводной (совместно
- Пульт управления LZ-UPW7 центральный (совместно
- Подключение трубопровода хладоносителя слева (стандартно) или справа (опционально) - подробно см. на стр. 51.

Технические характеристики

			200DR22H	300DR22H	400DR22H	500DR22H	600DR22	700DR22H	800DR22H	1000DR22H	1200DR22H	1400DR22H
Холодопроизвод	ительность	кВт	2,50	3,40	4,41	5,00	6,00	7,20	8,03	9,27	11,20	13,00
Теплопроизводит	гельность	кВт	4,10	5,67	7,35	8,60	9,98	12,00	13,60	16,00	19,20	22,16
Потребляемая м	ОЩНОСТЬ	Вт	48	64	81	97	114	131	169	204	243	291
Расход воды	Охлаждение	л/ч	430	585	758	860	1032	1238	1381	1594	1927	2236
Гидравлическое	Охлаждение	кПа	27	24	24	30	38	30	40	40	40	50
сопротивление	Обогрев	кПа	22	20	20	24	31	24	32	32	32	40
Максимальное ра давление воды	абочее	МПа					1	,6				
Электропитание		ф/В/Гц					1/22	0/50				
Объем рециркули воздуха	ируемого	м³/ч	340	510	680	850	1020	1190	1360	1700	2040	2380
Внешнее статиче давление	ское	Па					5	0				
Количество вент	иляторов	ШТ.	1	1	2	2	2	2	3	3	4	4
Уровень звуково на высокой скор		дБ(А)	40	42	44	46	47	48	50	51	52	53
Уровень звуково на низкой скорос		дБ(А)	24	31	33	33	33	37	36	40	40	42,5
Внутренний блок												
Размеры (Ш×В×	Γ)	MM	632×243×482	773×243×482	908×243×482	908×243×482	1003×243×482	1178×243×482	1368×243×482	1368×243×482	1658×243×482	1898×243×48
Упаковка (Ш×В×	:Γ)	MM	698×270×520	843×270×520	978×270×520	978×270×520	1073×270×520	1248×270×520	1438×270×520	1438×270×520	1728×270×520	1968×270×52
Масса нетто/мас	сса брутто	ΚΓ	12,3/14,4	14,7/16,9	17,6/20,2	17,6/20,2	18,8/21,5	21,4/24,5	25,5/29,1	26,0/29,7	33,8/39,5	35,3/39,8
Вход воды		дюйм					RC	3/4"				
Выход воды		дюйм					RC	3/4"				
Патрубок отвода	дренажа	дюйм					R 3	3/4"				
Запорно-регулир	ующий узел					ЗРУ-	Р4.02-2 или 3	РУ-Р2.82-1, ст	p. 50			


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха. • Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19,5 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C. — внешнее статическое давление воздуха 50 Па

- Шумовые данные получены замером в полубезэховой комнате
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 21 °C по сухому термометру;
- температура воды на входе 60 °C;
- расход воды и воздуха такой же, как в режиме охлаждения
- Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мі
LSF-200DR22H	475	443	443	415	627	513
LSF-300DR22H	620	588	588	560	772	658
LSF-400DR22H	755	723	723	695	907	793
LSF-500DR22H	755	723	723	695	907	793
LSF-600DR22H	850	818	818	790	1002	888
LSF-700DR22H	1025	993	993	965	1177	106
LSF-800DR22H	1215	1183	1183	1155	1367	125
LSF-1000DR22H	1215	1183	1183	1155	1367	125
LSF-1200DR22H	1505	1473	1473	1445	1657	154
LSF-1400DR22H	1745	1713	1713	1685	1897	178

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомлен

Фанкойлы LSF-...DN42L

канальные низконапорные четырехтрубные

Полное описание систем управления — на стр. 53-57.

Групповой контроль

Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами. Таким образом, не нарушается дизайн интерьера, так как на виду остаются лишь декоративные решетки. В модельном ряду канальных фанкойлов используется теплообменник увеличенной площади и удлиненный дренажный поддон V-образной формы для более эффективного отвода конденсата с теплообменника.

Особенности

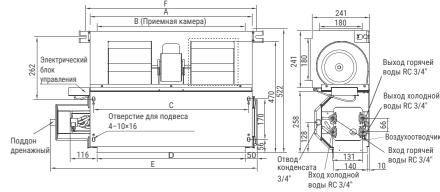
- Четырехтрубная система позволяет одновременно подключать фанкойл к источникам тепла и холода.
- Подключение труб с правой или с левой стороны по предварительному заказу.
- Возможность подмеса наружного воздуха.
- Приемная камера в комплекте.
- Специальная конструкция крепления фильтра, позволяющая извлекать фильтр в горизонтальном или вертикальном направлении (опция).
- Компактная конструкция поддона для отвода конденсата.
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

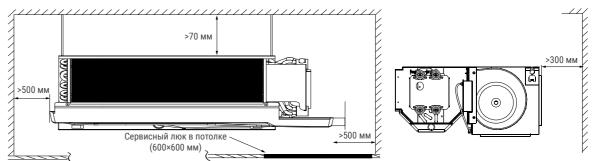
Опции

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM42.
- Пульт управления LZ-KNP беспроводной (совместно с LZ-FMM42).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM42).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM42).
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FMM42).
- Подключение трубопровода хладоносителя слева (стандартно) или справа (опционально) подробно см. на стр. 51.

Технические характеристики

			200DN42L	300DN42L	400DN42L	500DN42L	600DN42L	800DN42L	1000DN42L	1200DN42L	1400DN42L
Холодопроизводи	ительность	кВт	2,0	2,7	3,6	4,3	5,0	6,8	7,8	10,2	11,5
Теплопроизводит	гельность	кВт	3,0	4,0	5,2	5,7	7,2	9,6	10,8	13,5	15,5
Потребляемая мо	ощность	Вт	33	53	66	87	100	145	180	210	222
D	Охлаждение	л/ч	344	464	619	740	860	1170	1342	1754	1978
Расход воды	Обогрев	л/ч	258	344	447	490	619	826	929	1161	1333
Внешнее статиче давление воздух:		Па					12				
Гидравлическое	Охлаждение	кПа	7,6	14,4	8,2	9,5	17,2	18,8	30,0	40,3	51,9
сопротивление	Обогрев	кПа	6,8	12,5	23,5	24,0	40,7	20,7	34,7	28,6	55,2
Электропитание		ф/В/Гц					1/220/50				
Объем рециркули воздуха	ируемого	м³/ч	340	510	680	850	1020	1360	1700	2040	2380
Максимальное ра давление воды	абочее	МПа					1,6				
Внутренний блок											
Размеры (Ш×В×	Γ)	MM	741×241×522	841×241×522	941×2	41×522	1161×241×522	1461×241×522	1566×241×522	1856×241×522	2022×241×522
Упаковка (Ш×В×	Γ)	MM	790×260×555	890×260×555	990×2	50×555	1210×260×555	1510×260×555	1615×260×555	1905×260×555	2070×260×555
Масса нетто/брут	ГТО	КГ	15,1/17,4	17,5/20	20,7	/23,1	23,5/26,5	32,4/36,0	34,9/38,6	40,0/43,5	43,6/48,9
Уровень звуковог на высокой скоро		дБ(А)	35	36	37	40	42	43	45	46	48
Уровень звуковог на низкой скорос		дБ(А)	26	27	28	30	32	33	35	36	38
Соединительные	трубы										
Вход/выход холо,	дной воды	дюйм					RC 3/4"				
Вход/выход горяч	чей воды	дюйм					RC 3/4"				
Отвод конденсат	а	дюйм					R 3/4"				
Запорно-регулир	ующий узел						2-1 (для трубог (для трубопрог				


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C. — внешнее статическое давление воздуха 12 Па.

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
 - температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70°C;
- расход воды и воздуха такой же, как в режиме охлаждения
 Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

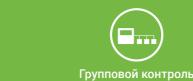
Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мі
LSF-200DN42L	545	484	513	485	741	583
LSF-300DN42L	645	585	613	585	841	683
LSF-400DN42L	745	685	713	685	941	783
LSF-500DN42L	745	685	713	685	941	783
LSF-600DN42L	965	905	933	905	1161	100
LSF-800DN42L	1265	1205	1233	1205	1461	130
LSF-1000DN42L	1370	1310	1338	1310	1566	140
LSF-1200DN42L	1660	1600	1628	1600	1856	169
LSF-1400DN42L	1826	1766	1794	1766	2022	186

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Фанкойлы LSF-...DG42

канальные низконапорные четырехтрубные



Полное описание систем управления — на стр. 53-57.

Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами. Таким образом, не нарушается дизайн интерьера, так как на виду остаются лишь декоративные решетки. В модельном ряду канальных фанкойлов используется теплообменник увеличенной

Особенности

- Четырехтрубная система позволяет одновременно подключать фанкойл к источникам тепла и холода.
- Подключение труб с правой или с левой стороны по предварительному заказу.
- Возможность подмеса наружного воздуха.
- Приемная камера в комплекте.

денсата с теплообменника.

- Специальная конструкция крепления фильтра, позволяющая извлекать фильтр в горизонтальном или вертикальном направлении (опция).
- Компактная конструкция поддона для отвода конден-
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55-57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

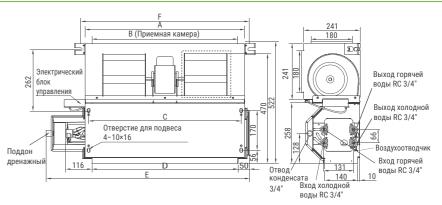
Опции

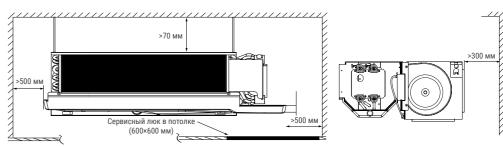
площади и удлиненный дренажный поддон V-образной формы для более эффективного отвода кон-

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM42.
- Пульт управления LZ-KNP беспроводной (совместно c LZ-FMM42).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM42).
- Пульт управления LZ-UPHW проводной (совместно c LZ-FMM42).
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FMM42).
- Подключение трубопровода хладоносителя слева (стандартно) или справа (опционально) - подробно см. на стр. 51.

Технические характеристики

Фанкойл LSF-			200DG42	300DG42	400DG42	500DG42	600DG42	800DG42	1000DG42	1200DG42	1400DG42
Холодопроизводи	тельность	кВт	2,0	2,7	3,6	4,3	5,0	6,8	7,8	10,2	11,5
Теплопроизводите	ельность	кВт	3,0	4,0	5,2	5,7	7,2	9,6	10,8	13,5	15,5
Потребляемая мог	щность	Вт	49	64	75	96	114	154	193	230	278
Deeves sess	Охлаждение	л/ч	344	464	619	740	860	1170	1342	1754	1978
Расход воды	Обогрев	л/ч	258	344	447	490	619	826	929	1161	1333
Внешнее статичес воздуха	кое давление	Па					30				
Гидравлическое	Охлаждение	кПа	7,6	14,4	8,2	9,5	17,2	18,8	30	40,3	51,9
сопротивление	Обогрев	кПа	6,8	12,5	23,5	24	40,7	20,7	34,7	28,6	55,2
Электропитание		ф/В/Гц					1/220/50		,		
Объем рециркулир	оуемого воздуха	м³/ч	340	510	680	850	1020	1360	1700	2040	2380
Максимальное рабочее давление воды		МПа					1,6				
Внутренний блок											
Размеры (Ш×В×Г	.)	MM	741×241×522	841×241×522	941×2	41×522	1161×241×522	1461×241×522	1566×241×522	1856×241×522	2022×241×522
Упаковка (Ш×В×Г	-)	MM	790×260×555	890×260×555	990×26	50×555	1210×260×555	1510×260×555	1615×260×555	1905×260×555	2070×260×555
Масса нетто/брутт	ГО	КГ	15,1/17,4	17,5/20,0	20,7	/23,1	23,5/26,5	32,4/36,0	34,9/38,6	40,0/43,5	43,6/48,9
Уровень звукового на высокой скоро		дБ(А)	41	42	43	44	45	46	47	48	49
Уровень звукового на низкой скорост		дБ(А)	31	32	33	34	35	36	37	38	39
Соединительные т	грубы										
Вход/выход холод	ной воды	дюйм					RC 3/4"				
Вход/выход горяч	ей воды	дюйм					RC 3/4"				
Отвод конденсата		дюйм					R 3/4"				
Запорно-регулиру	ющий узел			,			2-1 (для трубог (для трубопро)	


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха. • Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C; — внешнее статическое давление воздуха 30 Па

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70 °C;
- расход воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

Модель	А,	В,	С, мм	D, MM	Е, мм	F, мм
LSF-200DG42	545	484	513	485	741	583
LSF-300DG42	645	585	613	585	841	683
LSF-400DG42	745	685	713	685	941	783
LSF-500DG42	745	685	713	685	941	783
LSF-600DG42	965	905	933	905	1161	1003
LSF-800DG42	1265	1205	1233	1205	1461	1303
LSF-1000DG42	1370	1310	1338	1310	1566	1408
LSF-1200DG42	1660	1600	1628	1600	1856	1698
LSF-1400DG42	1826	1766	1794	1766	2022	1864

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...DG42H

канальные средненапорные четырехтрубные

Полное описание систем управления — на стр. 53-57.

4-трубный фанкойл

Групповой контроль

Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами. Таким образом, не нарушается дизайн интерьера, так как на виду остаются лишь декоративные решетки. В модельном ряду канальных фанкойлов используется теплообменник увеличенной площади и удлиненный дренажный поддон V-образной формы для более эффективного отвода конденсата с теплообменника.

Особенности

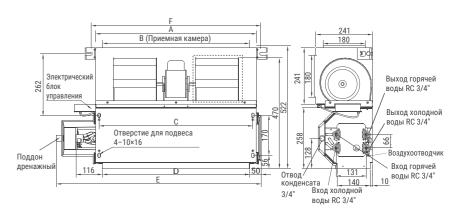
- Четырехтрубная система позволяет одновременно подключать фанкойл к источникам тепла и холода.
- Подключение труб с правой или с левой стороны по предварительному заказу.
- Возможность подмеса наружного воздуха.
- Приемная камера в комплекте.
- Специальная конструкция крепления фильтра, позволяющая извлекать фильтр в горизонтальном или вертикальном направлении (опция).
- Компактная конструкция поддона для отвода конден-
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 55-57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 57).

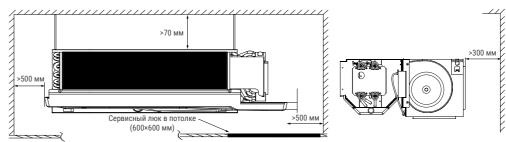
Опции

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM42.
- Пульт управления LZ-KNP беспроводной (совместно c LZ-FMM42).
- Пульт управления LZ-UQPW2 проводной.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM42).
- Пульт управления LZ-UPHW проводной (совместно c LZ-FMM42).
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FMM42).
- Подключение трубопровода хладоносителя слева (стандартно) или справа (опционально) - подробно см. на стр. 51.

Технические характеристики

Фанкойл LSF-			200DG42H	300DG42H	400DG42H	500DG42H	600DG42H	800DG42H	1000DG42H	1200DG42H	1400DG42H
Холодопроизводит	гельность	кВт	2,0	2,7	3,6	4,3	5,0	6,8	7,8	10,2	11,5
Теплопроизводите	льность	кВт	3,0	4,0	5,2	5,7	7,2	9,6	10,8	13,5	15,5
Потребляемая мог	ЦНОСТЬ	Вт	51	76	89	111	128	174	225	271	335
Dooyon poni	Охлаждение	л/ч	344	464	619	740	860	1170	1342	1754	1978
Расход воды	Обогрев	л/ч	258	344	447	490	619	826	929	1161	1333
Внешнее статическ воздуха	кое давление	Па					50				
Гидравлическое	Охлаждение	кПа	7,6	14,4	8,2	9,5	17,2	18,8	30,0	40,3	51,9
сопротивление	Обогрев	кПа	6,8	12,5	23,5	24,0	40,7	20,7	34,7	28,6	55,2
Электропитание		ф/В/Гц					1/220/50				
Объем рециркулир	уемого воздуха	м³/ч	340	510	680	850	1020	1360	1700	2040	2380
Объем рециркулируемого воздуха Максимальное рабочее давление воды		МПа					1,6				
Размеры (Ш×В×Г))	MM	741×241×522	841×241×522	941×2	41×522	1161×241×522	1461×241×522	1566×241×522	1856×241×522	2022×241×522
Упаковка (Ш×В×Г)	MM	790×260×555	890×260×555	990×20	50×555	1210×260×555	1510×260×555	1615×260×555	1905×260×555	2070×260×555
Масса нетто/брутт	0	КГ	15,1/17,4	17,5/20,0	20,7	/23,1	23,5/26,5	32,4/36	34,9/38,6	40,0/43,5	43,6/48,9
Уровень звукового на высокой скорос		дБ(А)	42	44	45	46	47	49	50	51	52
Уровень звукового на низкой скорост		дБ(А)	31	32	34	34	35	37	38	38	40
Соединительные т	рубы										
Вход/выход холодн	ной воды	дюйм					RC 3/4"				
Вход/выход горяче	ей воды	дюйм					RC 3/4"				
Отвод конденсата		дюйм					R 3/4"				
Запорно-регулирун	ощий узел						2-1 (для трубог (для трубопро)	


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C;
- внешнее статическое давление воздуха 50 Па

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70 °C;
- расход воздуха такой же, как в режиме охлаждения. ■ Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм
LSF-200DG42H	545	484	513	485	741	583
LSF-300DG42H	645	585	613	585	841	683
LSF-400DG42H	745	685	713	685	941	783
LSF-500DG42H	745	685	713	685	941	783
LSF-600DG42H	965	905	933	905	1161	1003
LSF-800DG42H	1265	1205	1233	1205	1461	1303
LSF-1000DG42H	1370	1310	1338	1310	1566	1408
LSF-1200DG42H	1660	1600	1628	1600	1856	1698
LSF-1400DG42H	1826	1766	1794	1766	2022	1864

Примечания

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Фанкойлы LSF-...DD22H(E)

канальные средненапорные двухтрубные

Полное описание систем управления — на стр. 53-57.

2-трубный фанкойл

Групповой контроль

Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами. Данные модели средненапорных канальных фанкойлов имеют внешнее статическое давление воздуха 70–100 Па.

Особенности

- Широкий спектр применения. Сочетают в себе компактные размеры с полным спектром функциональных возможностей
- Размещаются в монтажном пространстве подвесного потолка и обеспечивают подачу обработанного воздуха.
- Подключение труб с правой или левой стороны по предварительному заказу.
- Возможность установки электронагревателя (опция).
- Возможность группового контроля (до 64 фанкойлов с одного центрального пульта LZ-UPW7) (подробнее на стр. 55–57).
- Возможность подключения к системе BMS по сетевому протоколу Modbus (подробнее на стр. 57).

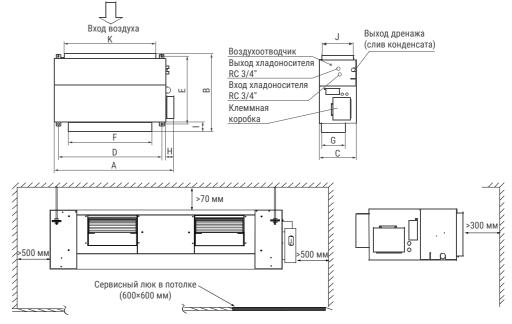
Исполнение

 LSF-...DD22HE — фанкойл со встроенным электронагревателем.

ОПЦИИ

- Термостат LZ-FUPW42 механический.
- Блок управления LZ-FMM22.
- Пульт управления LZ-KNP беспроводной (совместно с.I.7-FMM22)
- Пульт управления LZ-HJPW проводной сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UPHW проводной (совместно с LZ-FMM22).
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FMM22).
- Пульт управления LZ-UQPW2 проводной сенсорный.
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Подключение трубопровода хладоносителя справа (стандартно) или слева (опционально) подробно см. на стр. 51.

Технические характеристики


		800DD22H(E)	1000DD22H(E)	1200DD22H(E)	1400DD22H(E)	1600DD22H(E)	1800DD22H(E)	2200DD22H(E)	
Холодопроизводительность	кВт	6,6	8,8	10,0	12,0	14,1	15,8	19,9	
Теплопроизводительность	кВт	9,7	13,2	15,0	17,9	21,2	23,8	30,0	
Потребляемая мощность	Вт	320	350	350	350	550	800	950	
Мощность электронагревателя (опция)	кВт	5	5	5	5	9,5	9,5	9,5	
Расход воды	л/ч	1135	1514	1720	2064	2425	2718	3423	
Внешнее статическое давление воздуха	Па		7	0			100		
Гидравлическое сопротивление	кПа	8	24	24	36	60	78	110	
Электропитание	ф/В/Гц				1/220/50				
Объем рециркулируемого воздуха	М3/Ч	1360	1700	2040	2380	2720	3060	3740	
Максимальное рабочее давление воды	МПа				1,6				
Размеры (Ш×В×Г)	MM		946×4	00×816			1290×400×809		
Упаковка (Ш×В×Г)	MM		1075×4	80×857		1448×460×877			
Масса нетто/брутто	КГ	50/55	52/57	52/57	54/59	76/83			
Уровень звукового давления на высокой скорости	дБ(А)	49	50	51	52	54	60	61	
Уровень звукового давления на низкой скорости	дБ(А)	35	36	37	38	40	46	47	
Вход воды	дюйм				RC 3/4"				
Выход воды	дюйм	RC 3/4"							
Отвод конденсата	MM	Пластиковый патрубок OD Ø32							
Запорно-регулирующий узел			3PY-P4.02	?-2, стр. 50		3	ВРУ-Р5.01-2, стр. 5	50	

Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C;
- максимальное внешнее статическое давление воздуха, в зависимости от модели, 70 Па или 100 Па.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	G, мм	Н, мм	I, мм	Ј, мм	К, мм
LSF-800DD22H	946	816	400	778	767	306	219	88	37	338	512
LSF-1000DD22H	946	816	400	778	767	306	219	88	37	338	512
LSF-1200DD22H	946	816	400	778	767	306	219	88	37	338	512
LSF-1400DD22H	946	816	400	778	767	306	219	88	37	338	512
LSF-1600DD22H	1290	809	400	1118	765	900	249	88	39	320	995
LSF-1800DD22H	1290	809	400	1118	765	900	249	88	39	320	995
LSF-2200DD22H	1290	809	400	1118	765	900	249	88	39	320	995

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Запорно-регулирующие узлы ЗРУ-Р

Запорно-регулирующие узлы для фанкойлов предназначены для подачи или отключения потоков хладоносителя и теплоносителя от источника к фанкойлу. Основным компонентом комплекта является 3-ходовой клапан, использование которого позволяет сохранить общий расход в сети хладоносителя и теплоносителя. Для обвязки фанкойлов LESSAR рекомендуется использовать комплекты запорно-регулирующих узлов **ЗРУ-Р**. Комплекты ЗРУ-Р представляют собой набор подготовленных компонентов запорно-регулирующего узла, сборка которых на объекте займет всего лишь несколько минут и не требует привлечения высококлассных специалистов.

Маркировка запорно-регулирующих узлов -

- 1 ЗРУ запорно-регулирующий узел
- 2 Р − комплект для сборки
- **3** Значение K_{vs} 3-ходового клапана

- 4 Номер модели
- Модификация
- Таблица соответствия 2-трубных фанкойлов и запорно-регулирующих узлов

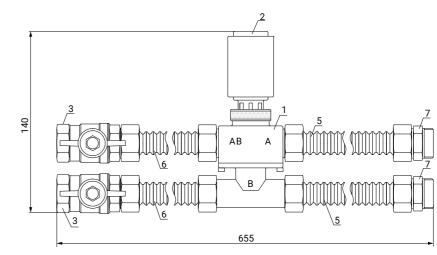
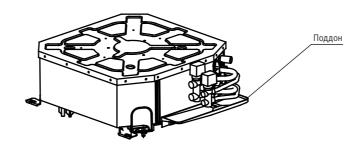

Модель фанкойла	Модель узла для самостоятельной сборки	K _{vs}	Модель узла для самостоятельной сборки	K _{vs} 2	Диаметр соединения с фанкойлом	Поддон для сбора конденсата
LSFB1J22	3PY-P4.01-2	4,0	3PY-P2.81-1	2,8	HP 1/2"	_
LSFBP22C						LZ-BDD42 (C)
LSFBM22						LZ-BDD42
LSF-800/1000/1 200/1400DD22H(E)	3PY-P4.02-2		3PV-P2.82-1			_
LSFDR22L	3PY-P4.UZ-Z	4.0	JF 9 - F 2.02 - 1	0.0	LID 2 /4"	_
LSFDR22		4,0		2,8	HP 3/4"	_
LSFDR22H						_
LSFAQ22C	ODV D4 05 0		2DV D0 0F 1			_
LSFAQ22	ЗРУ-Р4.05-2		3PY-P2.85-1			_
LSF-1600/1 800/2200DD22H(E)	3PY-P5.01-2	5,0			HP 3/4"	

Таблица соответствия 4-трубных фанкойлов и запорно-регулирующих узлов

Модель фанкойла	Модель узла для самостоятельной сборки	K _{vs}	Модель узла для самостоятельной сборки	K _{vs}	Диаметр соединения с фанкойлом	Поддон для сбора конденсата
LSFBP42C	Для трубопровода хладоносителя ЗРУ-Р4.02-2	4,0	Для трубопровода хладоносителя ЗРУ-Р2.82-1	2,8	HP 3/4" — охлаждение	LZ-BDD42 (C)
LSFBM42	Т Для трубопровода теплоносителя ЗРУ-Р4.04-2	4,0	т Для трубопровода теплоносителя ЗРУ-Р2.84-1	2,8	HP 1/2" — обогрев	LZ-BDD42
LSFDG42(E)	Для трубопровода		Для трубопровода			
LSFDG42H	хладоносителя ЗРУ-Р4.02-2 + Для трубопровода	4,0	хладоносителя ЗРУ-Р2.82-1 + Для трубопровода	2,8	НР 3/4" — охлаждение НР 3/4" — обогрев	_
LSFDN42L	теплоносителя ЗРУ-Р4.02-2		теплоносителя ЗРУ-Р2.82-1			
LSFAQ42 LSFAQ42A	Для трубопровода хладоносителя ЗРУ-Р4.05-2	4,0	Для трубопровода хладоносителя ЗРУ-Р2.85-1	2,8	HP 3/4" — охлаждение	_
LSFAQ42C	Для трубопровода теплоносителя ЗРУ-Р1.76-1	1,7	+ Для трубопровода теплоносителя ЗРУ-Р1.76-1	1,7	HP 1/2" — обогрев	

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

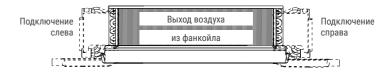
Запорно-регулирующий узел серии ЗРУ-Р


Nº	Наименование	Количество
1	Клапан 4-ходовой DN20, Kvs=4 (VFX437)	1
2	Привод клапана электротермический (SE1TP230)	1
3	Кран шаровой с вн./нар. резьбой 3/4", R914X024	2
4	Резиновая прокладка для трубы 19 M	8
5	Подводка гибкая, Ду19, L= 0,36 м	2
6	Подводка гибкая, Ду19, L= 0,12 м	2
7	Ниппель 3/4" нарнар.	2

Примечания

- На данном чертеже представлен запорно-регулирующий узел ЗРУ-Р4.02-2.
- Резьбовые соединения уплотняются анаэробным герметиком, входящим в комплект поставки.
- Если запорно-регулирующий узел выступает за поддон фанкойла, во избежание протечек конденсата выступающую часть узла необходимо изолировать теплоизоляцией соответствующего типа.
- В комплект поставки не входит тепловая изоляция и прочие расходные материалы.
- Состав обвязок может быть изменен производителем без предварительного уведомления.

Поддон для сбора конденсата (внешний) для кассетных фанкойлов (опция)


При заказе запорно-регулирующего узла рекомендуем доукомплектовать кассетный фанкойл внешним поддоном для сбора конденсата (опция), чтобы избежать протечек конденсата, образующегося на запорно-регулирующем узле.

Поддон для сбора конденсата (внешний) и запорно-регулирующий узел смонтированы на кассетном фанкойле

Как определить сторону подключения фанкойла

3-ходовой клапан с приводом LZ-V2(4)

Помимо запорно-регулирующих узлов ЗРУ-Р для самостоятельной сборки, LESSAR предлагает комплекты **LZ-V,** состоящие из 3-ходового клапана и термопривода. Использование данных комплектов позволяет значительно экономить, не переплачивая за компоненты, которые не планируется использовать, а также дает возможность не ограничиваться длиной соединительных патрубков при проектировании.

Таблица соответствия 2-трубных фанкойлов и комплектов LZ-V

Модель фанкойла	Модель узла	Диаметр соединений	Поддон для сбора конденсата
LSFB1J22	LZ-V4	G 1/2"	-
LSFBP22C			LZ-BDD42 (C)
LSFBM22			LZ-BDD42
LSFAQ22			_
LSFAQ22C	LZ-V2	G 3/4"	_
LSFDR22L			_
LSFDR22			_
LSFDR22H			_

Таблица соответствия 4-трубных фанкойлов и комплектов LZ-V

Модель фанкойла	Модель узла	Диаметр соединений	Поддон для сбора конденсата
LSFBP42C			LZ-BDD42 (C)
LSFBM42	Для трубопровода хладоносителя		LZ-BDD42
LSFAQ42 LSFAQ42A LSFAQ42C	– LZ-V2 + Для трубопровода теплоносителя LZ-V4	G 3/4" — охлаждение G 1/2" — обогрев	_
LSFDN42L LSFDG42(E) LSFDG42H	Для трубопровода хладоносителя LZ-V2 + Для трубопровода теплоносителя LZ-V2	G 3/4" — охлаждение G 3/4" — обогрев	_

Аксессуары для фанкойлов

Пульты управления беспроводные

LZ-KNP (опция) -

Пульт управления беспроводной предназначен для дистанционного управления работой фанкойлов.

. Применяется для управления:

- настенными фанкойлами серии LSF-...KH22;
- однопоточными кассетными фанкойлами серии LSF-...В1J22;
- компактными кассетными фанкойлами серий LSF-...BP22C и LSF-...BP42C;
- кассетными фанкойлами серий LSF-...BM22 и LSF-...BM42;
- канальными и напольно-потолочными фанкойлами совместно с LZ-FMM22 и LZ-FMM42.

Пульты управления проводные

LZ-UPW4 (в комплекте) —

Пульт управления проводной предназначен для управления работой фанкойлов. Применяется для управления:

- настенными фанкойлами серии LSF-...KH22;
- однопоточными кассетными фанкойлами серии LSF-...В1J22;
- компактными кассетными фанкойлами серий LSF-...BP22C и LSF-...BP42C;
- кассетными фанкойлами серий LSF-...BM22 и LSF-...BM42.

LZ-UQPW2 (опция)

Проводной пульт управления сенсорный для управления канальными и напольно-потолочными фанкойлами.

Применяется для управления:

- канальными двухтрубными фанкойлами серии LSF-...DR22L;
- канальными двухтрубными фанкойлами серии LSF-...DR22;
- канальными двухтрубными фанкойлами серии LSF-...DR22H;
- напольно-потолочными фанкойлами серий LSF-...AQ22; LSF-...AQ22C; LSF-...AQ42; LSF-...AQ42A и LSF-...AQ42C;
- канальными четырехтрубными фанкойлами серии LSF-... DG42;
- канальными четырехтрубными фанкойлами серии LSF-...DG42H;
- канальными двухтрубными фанкойлами серии LSF-...DD22H с установленным блоком силовых реле;
- канальными четырехтрубными фанкойлами серии LSF-... DN42L.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Аксессуары для фанкойлов

Пульты управления проводные

LZ-HJPW (опция)

Пульт управления проводной сенсорный.

Позволяет задавать режимы работы фанкойла, устанавливать время включения и отключения, регулировать направление жалюзи (для моделей с регулируемыми жалюзи).

Содержит приемник ИК-сигналов беспроводного пульта управления LZ-KNP.

Применяется для управления:

- настенными фанкойлами серии LSF-...KH22;
- однопоточными кассетными фанкойлами серии LSF-...В1J22;
- компактными кассетными фанкойлами серий LSF-...BP22C и LSF-...BP42C;
- кассетными фанкойлами серий LSF-...BM22 и LSF-...BM42:
- канальными и напольно-потолочными фанкойлами совместно с LZ-FMM22 и LZ-FMM42.

LZ-UPHW (опция)

Пульт управления проводной упрощенный, сохраняющий все возможности настройки оборудования. Идеальный вариант для офисов и гостиничных номеров, где для включения потребуется нажать всего одну кнопку.

Применяется для управления:

- настенными фанкойлами серии LSF-...KH22;
- однопоточными кассетными фанкойлами серии LSF-...В1J22;
- компактными кассетными фанкойлами серий LSF-...BP22C и LSF-...BP42C;
- кассетными фанкойлами серий LSF-...BM22 и LSF-...BM42;
- канальными и напольно-потолочными фанкойлами совместно с LZ-FMM22 и LZ-FMM42.

LZ-UQPG2 (опция)

Проводной пульт управления сенсорный для управления канальными фанкойлами по Modbus RTU. Максимальное количество подключаемых фанкойлов по Modbus RTU - 32 шт. Применяется для управления:

- канальными фанкойлами серии: LSF-...DR22, LSF-...DR22L, LSF-...DR22H, LSF-...DN42L, LSF-... DG42, LSF-...DG42H;
- канальными двухтрубными фанкойлами серии LSF-...DD22H с установленным блоком силовых реле;
- напольно-потолочными фанкойлами серий: LSF-...AQ22, LSF-...AQ22C, LSF-...AQ42, LSF-...AQ42A, LSF-...AQ42C.

Термостаты механические проводные

LZ-FUPW42 (опция)

Термостат механический проводной для управления работой фанкойлов. LZ-FUPW42 применяется для управления:

- канальными двухтрубными фанкойлами серии LSF-...DR22L;
- канальными двухтрубными фанкойлами серии LSF-...DR22;
- канальными двухтрубными фанкойлами серии LSF-...DR22H;
- напольно-потолочными фанкойлами серий LSF-...AQ22; LSF-...AQ22C; LSF-...AQ42; LSF-...AQ42C;
- канальными четырехтрубными фанкойлами серии LSF-... DG42;
- канальными четырехтрубными фанкойлами серии LSF-...DG42H;
- канальными двухтрубными фанкойлами серии LSF-...DD22H с установленным блоком силовых реле;
- канальными четырехтрубными фанкойлами серии LSF-... DN42L.

Системы группового контроля и управления

LZ-UPW7 пульт управления центральный сенсорный (опция)

Предназначен для централизованного управления группой фанкойлов.

С одного пульта возможно управление в индивидуальном и общем режимах (до 64 фанкойлов).

Применяется для управления:

- настенными фанкойлами серии LSF-...KH22;
- однопоточными кассетными фанкойлами серии LSF-...В1J22 совместно с LZ-UDNW;
- компактными кассетными фанкойлами серий LSF-...BP22C и LSF-...BP42C;
- кассетными фанкойлами серий LSF-...BM22 и LSF-...BM42;
- канальными и напольно-потолочными фанкойлами совместно с LZ-FMM22 и LZ-FMM42

Пульт проводной LZ-FMPW2 для управления фанкойлами канального и напольно-потолочного типов. Входит в комплект блоков управления LZ-FMM22 и LZ-FMM42. Применяется для управления:

- канальными фанкойлами серий LSF-...DR22L, LSF-...DR22, LSF-...DR22H, LSF-...DG42L, LSF-...
 DD22H(E) и LSF-...DG42H совместно с блоком управления LZ-FMM2(4)2;
- напольно-потолочными фанкойлами серий LSF-...AQ22, LSF-...AQ22C, LSF-...AQ42, LSF-...AQ42A, LSF-...AQ42C, совместно с блоком управления LZ-FMM2(4)2;
- указанными выше моделями совместно с беспроводным пультом управления LZ-KNP (приемник ИК-сигналов расположен на лицевой панели проводного пульта управления 1.7-FMPW2)

LZ-UDNW контроллер (опция) -

Плата управления сетевая (сетевой модуль) предназначена для подключения фанкойлов в единую сеть с пультом управления LZ-UPW7 или к контроллеру LZ-ModBus3. Применяется для управления:

- однопоточными кассетными фанкойлами серии LSF-...В1J22;
- компактными кассетными фанкойлами предыдущего модельного ряда LSF-...BE22C и LSF-...BE42C:
- кассетными фанкойлами предыдущего модельного ряда LSF-...BH2(4)2.

Является встроенным элементом для:

- кассетных фанкойлов LSF-...BM22 и LSF-...BM42;
- настенных фанкойлов LSF-...KH22;
- компактных кассетных фанкойлов LSF-...BP22C и LSF-...BP42C.

LZ-ULZW контроллер для подключения к системе доступа в помещение (опция)

Индивидуальный проводной модуль. Подключается к гостиничному модулю чтения ключ-карт с сухими контактами. Предназначен для контроля работы оборудования в отелях. Включает фанкойл при наличии ключ-карты в модуле чтения и отключает фанкойл, если ключ-карту вынуть из модуля чтения.

- При использовании пульта LZ-UPW7, автоматическое возобновление ранее установленных настроек фанкойла требует дополнительной преднастройки.
- В случае совместного применения с проводными пультами контроллер выдерживает паузу в 3 секунды и отправляет приказ на включение в том же режиме и при тех же настройках, что были при выключении.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Аксессуары для фанкойлов

Системы группового контроля и управления

LZ-FMM22 блок управления (опция)

Блок управления (система группового управления) предназначен для организации управления работой фанкойлов с проводного пульта управления LZ-FMPW2, также необходим для подключения фанкойлов к системе централизованного управления с центрального пульта LZ-UPW7. Блок управления LZ-FMM22 имеет встроенный шлюз для подключения фанкойлов к системе BMS по сетевому протоколу Modbus RTU.

В комплект входит пульт управления LZ-FMPW2.

Блок управления LZ-FMM22 применяется для управления двухтрубными фанкойпами:

- канальными фанкойлами серий LSF-...DR22L, LSF-...DR22, LSF-...DR22H, LSF-... DD22H(E);
- напольно-потолочными фанкойлами серий LSF-...AQ22, LSF-...AQ22C;
- указанными выше моделями совместно с беспроводным пультом управления LZ-KNP (приемник ИК-сигналов расположен на лицевой панели проводного пульта управления LZ-FMPW2).

LZ-FMM42 блок управления (опция)

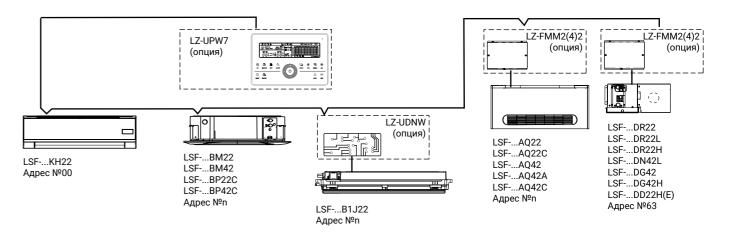
Блок управления (система группового управления) предназначен для организации управления работой фанкойлов с проводного пульта управления LZ-FMPW2, также необходим для подключения фанкойлов к системе централизованного управления с центрального пульта LZ-UPW7. Блок управления LZ-FMM42 имеет встроенный шлюз для подключения фанкойлов к системе BMS по сетевому протоколу Modbus RTU.

В комплект входит пульт управления LZ-FMPW2.

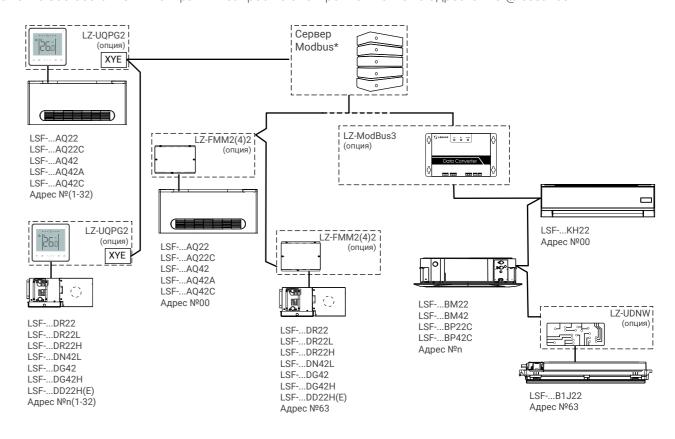
Блок управления LZ-FMM42 применяется для управления четырехтрубными фанкойлами:

- канальными фанкойлами серии LSF-...DN42L, LSF-...DG42, LSF-...DG42H;
- напольно-потолочными фанкойлами серий LSF-...AQ42, LSF-...AQ42A, LSF-...
- указанными выше моделями совместно с беспроводным пультом управления LZ-KNP (приемник ИК-сигналов расположен на лицевой панели проводного пульта управления LZ-FMPW2).

LZ-ModBus3 контроллер (опция)


Контроллер LZ-ModBus3 предназначен для интеграции фанкойлов в сети BMS, работающих по протоколу Modbus RTU. Максимальное количество подключаемых фанкойлов 64 шт.

Возможно применение с:


- настенными фанкойлами серии LSF-...KH22;
- однопоточными кассетными фанкойлами серии LSF-...B1J22 совместно с LZ-UDNW;
- компактными кассетными фанкойлами серий LSF-...BP22C и LSF-...BP42C;
- кассетными фанкойлами серий LSF-...BM22 и LSF-...BM42;
- кассетными фанкойлами предыдущего модельного ряда LSF-...BE22C, LSF-... BE42C, LSF-...BH22 и LSF-...BH42 — совместно с LZ-UDNW.

Принципиальные схемы централизованного управления фанкойлами

Принципиальная схема централизованного управления фанкойлами LESSAR с центрального пульта управления LZ-UPW7. Перед оформлением заказа рекомендуется связаться со службой поддержки для получения консультации по тел. 8 800-333-0495 или отправить запрос по электронной почте на адрес: chiller@lessar.com.

Принципиальная схема централизованного управления фанкойлами LESSAR по протоколу Modbus RTU. Перед оформлением заказа рекомендуется связаться со службой поддержки для получения консультации по тел. 8 800-333-0495 или отправить запрос по электронной почте на адрес: chiller@lessar.com.

Примечания

- Пунктирной линией выделены опциональные компоненты.
- Одновременное управление с центрального пульта и через протокол Modbus RTU не поддерживается.
- Для подключения кассетных фанкойлов серий LSF-...BM2(4)2 и LSF-...BP2(4)2C контроллер LZ-UDNW не используется.
- * Сервер Modbus приобретается у сторонних производителей

DC Фанкойлы LESSAR

Следуя принципу постоянного развития с ориентацией на потребности рынка, **LESSAR** продолжает развивать модельный ряд двухтрубных и четырехтрубных фанкойлов. Фанкойлы **LESSAR** — это высокоэффективные внутренние блоки системы централизованного кондиционирования воздуха типа «чиллер-фанкойл», с отличными функциональными характеристиками и с низким уровнем шума. Современный дизайн позволяет вписать их практически в любой интерьер.

Код производительности –

МОДЕЛЬ		150	200	250	300	350	400	450	500	550	600	650	750	800	850	950	1000	1200	1500	№ стр.
Фанкойлы настенные 2-трубные LSF-EKQ22				•	•		•		٠		٠									60
Фанкойлы кассетные компактные 2-трубные LSF-EBQ22C					•		•		•											62
Фанкойлы кассетные компактные 4-трубные LSF-EBQ42C	*				•		•		•											64
Фанкойлы кассетные 2-трубные LSF-EBQ22											•		•		•			•		66
Фанкойлы кассетные 4-трубные LSF-EBQ42											•		•		•	•		•	•	68
Фанкойлы напольно- потолочные 2-трубные в корпусе LSF-EAQ22		•	•	•	•		•	•	•	•	•	•	•	•						70
Фанкойлы напольно- потолочные 2-трубные без корпуса LSF-EAQ22C		•	•	•	•	•	•		•	•	•	•		•	•					72
Фанкойлы канальные низконапорные 2-трубные LSF-EDQ22			•		•		•		•		•			•			•			74
Фанкойлы канальные низконапорные 2-трубные LSF-EDR22			•		•		•		•		•			•			•			76

Модельный ряд DC фанкойлов LESSAR:

- Настенный фанкойл серии LSF-E...KQ22 с эстетичным и привлекательным дизайном и встроенным запорнорегулирующим узлом. В комплект поставки входит проводной пульт LZ-HJPW и встроенный сетевой модуль, что значительно упрощает подключение к центральному пульту управления LZ-UPW7.
- Модели компактных 2-трубных LSF-E...BQ22C и 4-трубных LSF-E...BQ42C кассетных фанкойлов имеют в своей стандартной комплектации проводной пульт LZ-HJPW.
- Модели 2-трубных LSF-E...BQ22 и 4-трубных LSF-E...BQ42 кассетных фанкойлов имеют в своей стандартной комплектации проводной пульт LZ-HJPW.
- Модельный ряд канальных двухтрубных фанкойлов LSF-E...DQ22 (двухрядные) и LSF-E...DR22 (трехрядные).
- Модельный ряд напольно-потолочных фанкойлов LSF-E...AQ22 и LSF-E...AQ22C.

Удобным решением остаются комплекты запорно-регулирующих узлов:

- Набор компонентов для самостоятельной сборки (3РУ-Р). Производство Россия.
- Также для тех, кто желает получить более экономичный вариант, есть возможность поставки с фанкойлом комплекта LZ-V2(4), состоящего только из клапана и привода.

Маркировка фанкойлов

- 1 L торговая марка LESSAR
- 2 S внутренний блок
- F фанкойл
- 4 Тип мотора вентилятора
 - _ с АС-мотором вентилятора
 - Е с DC-мотором вентилятора
- 5 Код производительности
- 6 Тип блока
 - К настенный
 - В кассетный
 - D канальный
 - А напольный и напольно-потолочный

- 7 Модельный ряд
- 8 Тип системы
 - 2 2-трубная система
 - 4 4-трубная система
- 9 Тип электропитания
 - 2 220 В / 50 Гц / 1 фаза
 - 4 380 В / 50 Гц / 3 фазы
- 10 С компактная модель/скрытая модель
 - Н средненапорная модель (50, 70, 100 Па)
 - L низконапорная модель (12 Па)
 - _ низконапорная модель (30 Па)
- **11** Е электроподогрев (опция)

DC фанкойлы LSF-E...KQ22

настенные двухтрубные

Полное описание систем управления — на стр. 81–85.

2-трубный фанкойл

Групповой контроль СС мотор

DC мотор вентилятора

Современный эстетичный дизайн корпуса позволяет настенному фанкойлу с легкостью найти себе место в помещении с любым интерьером, а встроенные запорно-регулирующий узел и сетевой модуль существенно упростят монтаж и сэкономят время на установку.

Особенности

- DC-мотор вентилятора.
- Эстетичный дизайн корпуса.
- Сдвоенные жалюзи обеспечивают равномерное распределение воздушного потока.
- Радиальный вентилятор для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Встроенный запорно-регулирующий узел.
- Легкосъемный воздушный фильтр.
- Встроенный сетевой модуль.
- Проекционный дисплей.
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83).
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).

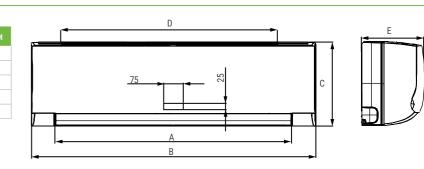
В комплекте

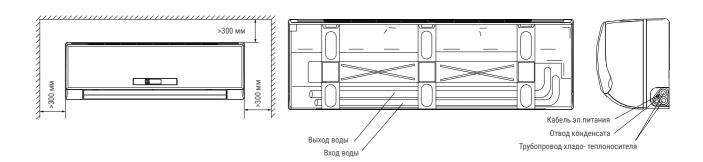
■ Пульт управления LZ-HJPW проводной сенсорный.

Опции

- Пульт управления LZ-URPL2 беспроводной.
- Пульт управления LZ-UPW7 центральный сенсорный.
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. 85).

Технические характеристики –


			E250KQ22	E300KQ22	E400KQ22	E500KQ22	E600KQ22
Холодопроизводите	ельность	кВт	2,70	2,91	3,81	4,47	4,87
Теплопроизводител	IЬНОСТЬ	кВт	3,29	3,76	5,08	5,68	6,31
Потребляемая мощ	ность (охлаждение)	Вт	13	15	33	26	38
Потребляемая мощ	ность (обогрев)	Вт	12	14	31	23	33
Расход воды (охлаж	кдение)	л/ч	480	510	670	770	850
Гидравлическое	Охлаждение	кПа	31,61	37,20	56,75	41,17	50,68
сопротивление	Обогрев	кПа	37,49	40,64	61,94	43,74	51,65
Максимальное рабо	очее давление воды	МПа			1,6		
Электропитание		ф/В/Гц			1/220/50		
Объем рециркулиру	емого воздуха	м³/ч	492	585	825	862	979
Уровень звукового	давления на высокой скорости	дБ(А)	32	32	45	38	44
Уровень звукового	давления на низкой скорости	дБ(А)	27	23	35	30	35
Внутренний блок							
Размеры без упако	вки (Ш×В×Г)	ММ	$915 \times 290 \times 230$	915 × 290 × 230	915×290×230	1072×315×230	1072 × 315 × 230
Размеры в упаковк	e (Ш×B×Γ)	ММ	1020×390×315	1020×390×315	1020×390×315	1180 × 415 × 315	1180 × 415 × 315
Масса нетто		КГ	12,7	12,7	12,7	15,1	14,9
Масса брутто		КГ	15,6	15,6	15,6	19,0	18,6
Соединительные тр	убы						
Вход воды		дюйм			G 3/4"		
Выход воды		дюйм			G 3/4"		
Патрубок отвода др	енажа	ММ		Пла	стиковый патрубок OD	Ø20	
Запорно-регулирую	щий узел				встроенный		


Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
 температура воды на входе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 70 °C.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм
LSF-E250KQ22	732	915	290	663	233
LSF-E300KQ22	732	915	290	663	233
LSF-E400KQ22	732	915	290	663	233
LSF-E500KQ22	892	1072	315	813	237
LSF-E600KQ22	892	1072	315	813	237

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

 \sim 60 \sim 70 \sim 70

DC фанкойлы LSF-E...BQ22C

кассетные двухтрубные компактные

7-стороннее распределение воздушного потока

Пульт управления LZ-HJPW проводной

Пульт управления LZ-URPL2 беспроводной

Пульт управления LZ-UPW7 центральный

Полное описание систем управления — на стр. 81-85.

Нагрев

2-трубный фанкойл

Групповой контроль

DC мотор вентилятора

Кассетные компактные фанкойлы предназначены для установки в помещениях с подвесными потолками. 7-стороннее распределение воздушного потока обеспечивает равномерную обработку воздуха. Благодаря возможности встроить фанкойл в ячейку стандартного евроразмера (600×600 мм), расположению в любой удобной части потолка и установке, позволяющей скрыть основные элементы фанкойла, кассетные компактные фанкойлы являются отличным решением для современных интерьеров.

Особенности

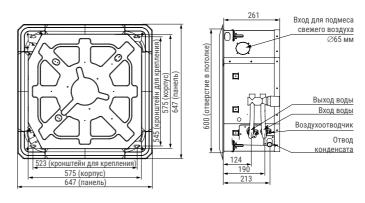
- DC-мотор вентилятора.
- 7-стороннее распределение воздушного потока.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха.
- Совместимость с высокими потолками, что позволяет устанавливать их в холлах и фойе.
- Евроразмер. Встраивается в ячейку 600×600 мм. Высота фанкойла 261 мм.
- Возможность подмеса свежего воздуха.
- Функция сохранения последних настроек в случае перебоев с электроэнергией (AutoRestart).
- Встроенный дренажный насос, высота подъема воды 500 мм от дренажного патрубка.
- Съемный воздушный фильтр для легкого обслуживания
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83).

В комплекте

■ Пульт управления LZ-HJPW проводной сенсорный.

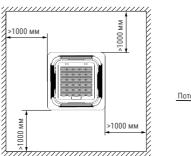
Опции

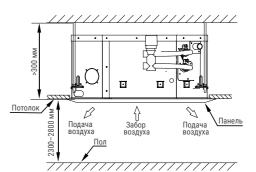
- Пульт управления LZ-URPL2 беспроводной.
- Пульт управления LZ-UPW7 центральный сенсорный (на фанкойле необходим порт ХҮЕ (опция)).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. 85).
- Дренажный поддон LZ-BDD42 (С) (описание см. на стр. 79).


Технические характеристики –

			E300BQ22C	E400BQ22C	E500BQ22C		
Холодопроизводите	ельность	кВт	2,98	3,96	4,20		
Теплопроизводител	ІЬНОСТЬ	кВт	4,01	4,78	5,76		
Потребляемая мош	ность (охлаждение)	Вт	15	28	43		
Потребляемая мощ	11 /	Вт	14	28	33		
Расход воды (охлаж	кдение)	л/ч	530	700	750		
Гидравлическое	Охлаждение	кПа	10,00	11,48	12,32		
сопротивление	Обогрев	кПа	8,20	12,68	11,41		
Максимальное рабо	очее давление воды	МПа		1,6			
Электропитание		ф/В/Гц		1/220/50			
Объем рециркулиру	емого воздуха	м³/ч	535	719	781		
Уровень звукового	давления на высокой скорости	дБ(А)	39	42	43		
Уровень звукового	давления на низкой скорости	дБ(А)	27	30	32		
Размеры без упаког	вки (Ш×В×Г)	MM	575×261×575	575×261×575	575×261×575		
Размеры в упаковк	e (Ш×B×Γ)	MM	675×320×675	675×320×675	675×320×675		
Масса нетто		КГ	16,5	16,5	16,5		
Масса брутто		КГ	22,5	22,5	22,5		
					LZ-FPBC2		
Размеры без упаког	вки (Ш×В×Г)	MM	647×50×647	647×50×647	647×50×647		
Размеры в упаковк	e (Ш×B×Γ)	MM	715×123×715	715×123×715	715×123×715		
Масса нетто		КГ	2,6	2,6	2,6		
Масса брутто		КГ	4,7	4,7	4,7		
Соединительные тр	убы						
Вход воды		дюйм		G 3/4"			
Выход воды		дюйм		G 3/4"			
Патрубок отвода др	енажа	MM	Пластиковый патрубок ОD ∅25				
Напор дренажного	насоса	мм вод.ст.	500				
Запорно-регулирую	щий узел			ЗРУ-Р4.02-2 или ЗРУ-Р2.82-1, стр. 78			

Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны при условиях:
- температура воздуха на входе 27 °C по сухому термометру; — температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения
 Максимальная температура горячей воды на входе 70 °C.


Габаритные размеры

Внимание!

Расположение 3-ходового вентиля указано для примера 3-ходовой вентиль не входит в стандартную комплектацию оборудования.

DC фанкойлы LSF-E...BQ42C

кассетные четырехтрубные компактные

7-стороннее распределение воздушного потока

Пульт управления LZ-HJPW проводной

Пульт управления LZ-UPW7 центральный

Полное описание систем управления — на стр. 81-85.

Охлаждение/нагрев

4-трубный фанкойл

Групповой контроль

DC мотор вентилятора

Кассетные компактные фанкойлы предназначены для установки в помещениях с подвесными потолками. 7-стороннее распределение воздушного потока обеспечивает равномерную обработку воздуха. Благодаря возможности встроить фанкойл в ячейку стандартного евроразмера (600×600 мм), расположению в любой удобной части потолка и установке, позволяющей скрыть основные элементы фанкойла, кассетные компактные фанкойлы являются отличным решением для современных интерьеров.

Особенности

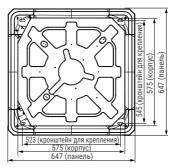
- DC-мотор вентилятора.
- 7-стороннее распределение воздушного потока.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха.
- Совместимость с высокими потолками, что позволяет устанавливать их в холлах и фойе.
- Евроразмер. Встраивается в ячейку 600×600 мм. Высота фанкойла 261 мм.
- Возможность подмеса свежего воздуха.
- Функция сохранения последних настроек в случае перебоев с электроэнергией (AutoRestart).
- Функция защиты от подачи холодного воздуха в режиме обогрева.
- Встроенный дренажный насос, высота подъема воды 500 мм от дренажного патрубка.
- Съемный воздушный фильтр для легкого обслуживания.

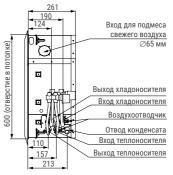
В комплекте

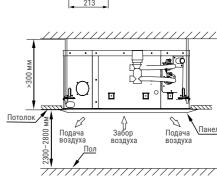
■ Пульт управления LZ-HJPW проводной сенсорный.

Опции

- Пульт управления LZ-URPL2 беспроводной.
- Пульт управления LZ-UPW7 центральный сенсорный. (на фанкойле необходим порт ХҮЕ (опция)).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. 85).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83).
- Дренажный поддон LZ-BDD42 (C) (описание см. на стр. 79).

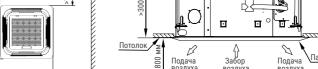

Технические характеристики —


			E300BQ42C	E400BQ42C	E500BQ42C			
Холодопроизводит	ельность	кВт	2,16	2,78	2,77			
Теплопроизводите	льность	кВт	3,56	4,25	4,50			
Потребляемая моц	цность (охлаждение)	Вт	15	30	35			
Потребляемая моц	цность (обогрев)	Вт	17	31	35			
Dooyon pon .	Охлаждение	л/ч	420	530	560			
Расход воды	Обогрев	л/ч	360	410	470			
Гидравлическое	Охлаждение	кПа	17,40	13,15	16,80			
сопротивление	Обогрев	кПа	29,80	30,40	36,10			
Максимальное раб	очее давление воды	МПа		1,6				
Электропитание		ф/В/Гц		1/220/50				
Объем рециркулир	уемого воздуха	м³/ч	493	669	673			
Уровень звукового	давления на высокой скорости	дБ(А)	39	42	44			
Уровень звукового	давления на низкой скорости	дБ(А)	27	30	31			
Размеры без упако	овки (Ш×В×Г)	MM	575×261×575	575×261×575	575×261×575			
Размеры в упаковк	ce (Ш×B×Γ)	MM	675×320×675	675×320×675	675×320×675			
Масса нетто		КГ	16,7	16,7	16,7			
Масса брутто		КГ	22,7	22,7	22,7			
					LZ-FPBC2			
Размеры без упако	овки (Ш×В×Г)	MM	647×50×647	647×50×647	647×50×647			
Размеры в упаковк	ke (Ш×Β×Γ)	MM	715×123×715	715×123×715	715×123×715			
Масса нетто	,	КГ	2,6	2,6	2,6			
Масса брутто		КГ	4,7	4,7	4,7			
Соединительные т	рубы							
Вход\Выход холодн	ной воды	дюйм		G 3/4"				
Вход\Выход горяче	ей воды	дюйм		G 1/2"				
Патрубок отвода д	ренажа	MM		Пластиковый патрубок ОD ∅25				
Напор дренажного	насоса	мм вод.ст.		500				
Запорно-регулирук	ощий узел		РУ-Р4.02-2 или ЗРУ-Р2.82-1 (для трубопровода хладоносителя) / ЗРУ-Р4.04-2 или ЗРУ-Р2.84-1 (для трубопровода теплоносителя), стр. 78					


Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха. ■ Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру; — температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.
- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70 °C;
- расход воды и воздуха такой же, как в режиме охлаждения
- Максимальная температура горячей воды на входе 70 °С.

Габаритные размеры



Внимание!

Расположение 3-ходового вентиля указано для примера. 3-ходовой вентиль не входит в стандартную комплектацию оборудования.

DC ФАНКОЙЛЫ КАССЕТНЫЕ LESSAR PROF

DC фанкойлы LSF-E...BQ22

кассетные двухтрубные

Панели LZ-FRB2 и LZ-FRB42

4-стороннее распределение воздушного потока (стандарт)

Пульт управления LZ-HJPW проводной

ОПЦИИ

Пульт управления LZ-URPL2 беспроводной

Пульт управления LZ-UPW7 центральный

Полное описание систем управления — на стр. 81-85.

2-трубный фанкойл

Групповой контроль

DC мотор вентилятора

Фанкойлы оснащены панелью с 4-сторонним распределением воздушного потока. Возможно установить панели LZ-FRB2 и LZ-FRB42 с новым дизайном. Благодаря скрытой установке основных элементов фанкойла, кассетные фанкойлы являются отличным решением для интерьеров с подвесными потолками.

Особенности

- DC-мотор вентилятора.
- 4-стороннее распределение воздушного потока.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха.
- Совместимость с высокими потолками, что позволяет устанавливать их в холлах и фойе.
- Компактные размеры фанкойла 840×840 мм. Высота фанкойла 230 мм и 300 мм (в зависимости от модели).
- Возможность подмеса свежего воздуха.
- Функция сохранения последних настроек в случае перебоев с электроэнергией (AutoRestart).
- Встроенный дренажный насос, высота подъема воды 750 мм от дренажного патрубка.
- Съемный воздушный фильтр для легкого обслужива-

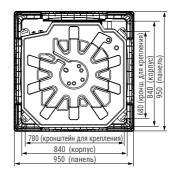
В комплекте

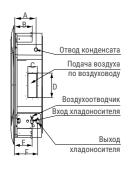
■ Пульт управления LZ-HJPW проводной сенсорный.

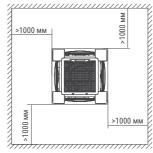
Опции

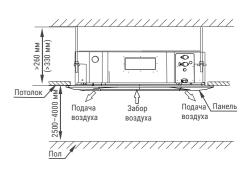
- Пульт управления LZ-URPL2 беспроводной.
- Пульт управления LZ-UPW7 центральный сенсорный (на фанкойле необходим порт ХҮЕ (опция)).
- Пульт управления LZ-UTPL2 беспроводной.
- Панели 360° LZ-FRB42 и LZ-FRB2.
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. 85).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83-85).
- Дренажный поддон LZ-BDD42 (описание см. на стр. 79).

Технические характеристики —


Фанкойл LSF-			E600BQ22	E750BQ22	E850BQ22	E950BQ22	E1200BQ22	E1500BQ22	
Холодопроизводительность		кВт	5,93	6,12	7,52	7,84	7,87	11,19	
Теплопроизводительность		кВт	8,42	8,62	10,37	10,86	10,92	14,92	
Потребляемая мощность (охлаждение)		Вт	41	49	68	75	85	126	
Потребляемая мощность (обогрев)		Вт	42	49	67	19,9	20	34,3	
Расход воды (охлаждение)		л/ч	1060	1100	1370	1430	1440	1960	
Гидравлическое	Охлаждение	кПа	23,8	21,3	20,1	22	22,3	36,6	
сопротивление	Обогрев	кПа	16,9	19,1	18,2	19,9	20,0	34,3	
Максимальное рабочее давление воды		МПа	1,6						
Электропитание		ф/В/Гц	1/220/50						
Объем рециркулируемого воздуха		м³/ч	1175	1229	1451	1530	1581	1871	
Уровень звукового давления на высокой скорости		дБ(А)	43	44	45	46	48	49	
Уровень звукового давления на низкой скорости		дБ(А)	33	34	37	39	41	39	
Размеры без упаковки (Ш×В×Г)		MM	840×230×840	840×230×840	840×300×840	840×300×840	840×300×840	840×300×840	
Размеры в упаковке (Ш×В×Г)		MM	900×237×900	900×237×900	900×330×900	900×330×900	900×330×900	900×330×900	
Масса нетто		КГ	23	23	27	27	27	29,5	
Масса брутто		КГ	28	28	33	33	33	34,5	
						RB22			
Размеры без упаковки (Ш×В×Г)		MM	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	
Размеры в упаковке (Ш×В×Г)		MM	1035×90×1035	1035×90×1035	1035×90×1035	1035×90×1035	1035×90×1035	1035×90×1035	
Масса нетто		КГ	6	6	6	6	6	6	
Масса брутто		КГ	9	9	9	9	9	9	
Вход воды дюйм		RC 3/4"							
Выход воды дюйм		RC 3/4"							
Патрубок отвода дренажа мм		MM	Пластиковый патрубок OD ∅32						
Напор дренажного насоса мм вод.		мм вод.ст.	750						
Запорно-регулирующий узел			ЗРУ-Р4.02-1, ЗРУ-Р2.82-1, стр. 78						


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру; температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.


- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения ■ Максимальная температура горячей воды на входе 70 °C.


Габаритные размеры

Модель	А, мм	В,	С,	D, мм	Е, мм	F, мм
LSF-E600BQ22	180	140	85	350	145	195
LSF-E750BQ22	180					
LSF-E850BQ22		140	155	350	155	205
LSF-E950BQ22	100					
LSF-E1200BQ22	180					
LSF-E1500BQ22						

DC ФАНКОЙЛЫ КАССЕТНЫЕ LESSAR PROF

DC фанкойлы LSF-E...BQ42

кассетные четырехтрубные

ОПЦИЯ

Панели LZ-FRB2 и LZ-FRB42

4-стороннее распределение воздушного потока (стандарт)

В КОМПЛЕКТЕ

Пульт управления LZ-HJPW проводной

Пульт управления LZ-URPL2 беспроводной

Пульт управления LZ-UPW7 центральный

Полное описание систем управления — на стр. 81–85.

ОПЦИИ

Групповой контроль

DC мотор вентилятора

Фанкойлы оснащены панелью с 4-сторонним распределением воздушного потока. Возможно установить панели LZ-FRB2 и LZ-FRB42 с новым дизайном. У Благодаря скрытой установке основных элементов фанкойла, кассетные фанкойлы являются отличным решением для интерьеров с подвесными потолками.

Особенности

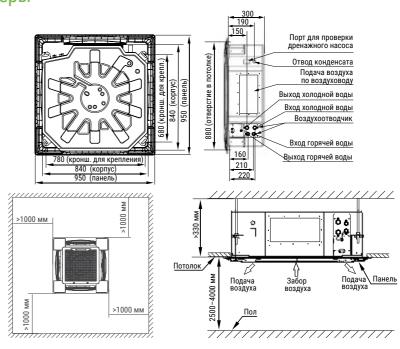
- DC-мотор вентилятора.
- 4-стороннее распределение воздушного потока.
- Автоматические жалюзи обеспечивают равномерное распределение воздуха.
- Совместимость с высокими потолками, что позволяет устанавливать их в холлах и фойе.
- Компактные размеры фанкойла 840×840 мм. Высота фанкойла 300 мм.
- Возможность подмеса свежего воздуха.
- Функция сохранения последних настроек в случае перебоев с электроэнергией (AutoRestart).
- Встроенный дренажный насос, высота подъема воды 750 мм от дренажного патрубка.
- Съемный воздушный фильтр для легкого обслужива-

В комплекте

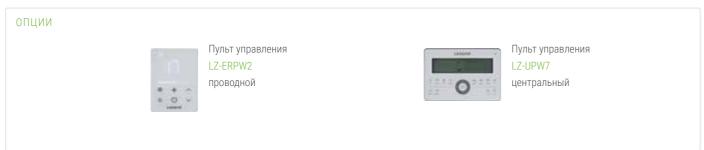
■ Пульт управления LZ-HJPW проводной сенсорный.

Опции

- Пульт управления LZ-URPL2 беспроводной.
- Пульт управления LZ-UPW7 центральный сенсорный (на фанкойле необходим порт ХҮЕ (опция)).
- Пульт управления LZ-UTPL2 беспроводной.
- Панели 360° LZ-FRB42 и LZ-FRB2.
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. 85).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83-85).
- Дренажный поддон LZ-BDD42 (описание см. на стр. 79).


Технические характеристики —

		E600BQ42	E750BQ42	E850BQ42	E950BQ42	E1200BQ42	E1500BQ42			
Холодопроизводительность		кВт	4,96	5,18	5,13	5,31	7,98	8,04		
Теплопроизводительность		кВт	6,94	7,37	7,65	7,65	11,04	11,34		
Потребляемая мощность (охлаждение)		Вт	62	72	80	90	121	139		
Потребляемая мощность (обогрев)		Вт	55	68	76	84	118	125		
Расход воды	Охлаждение	л/ч	900	940	930	960	1420	1430		
	Обогрев	л/ч	640	680	710	710	1000	1020		
Гидравлическое сопротивление	Охлаждение	кПа	14,8	15,9	16	16,4	33,9	33		
	Обогрев	кПа	37,2	39,5	41,6	43,8	52,1	62,1		
Максимальное рабочее давление воды		МПа	1,6							
Электропитание		ф/В/Гц	1/220/50							
Объем рециркулируемого воздуха		M ³ /4	1184	1278	1328	1403	1642	1708		
Уровень звукового давления на высокой скорости		дБ(А)	42	44	45	46	48	49		
Уровень звукового давления на низкой скорости		дБ(А)	31	33	36	38	42	38		
Внутренний блок										
Размеры без упаковки (Ш×В×Г)		MM	840×300×840	840×300×840	840×300×840	840×300×840	840×300×840	840×300×840		
Размеры в упаковке (Ш×В×Г)		MM	900×330×900	900×330×900	900×330×900	900×330×900	900×330×900	900×330×900		
Масса нетто		КГ	27,5	27,5	27,5	27,5	30,0	30,0		
Масса брутто		КГ	33,5	33,5	33,5	32,4	35,0	35,0		
Панель						RB22				
Размеры без упаковки (Ш×В×Г)		MM	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950	950×45×950		
Размеры в упаковке (Ш×В×Г)		MM	1035×90×1035	1035×90×1035	1035×90×1035	1035×90×1035	1035×90×1035	1035×90×103		
Масса нетто		КГ	6	6	6	6	6	6		
Масса брутто		КГ	9	9	9	9	9	9		
Вход\Выход холодной воды дюйм		RC 3/4"								
Вход\Выход горячей воды дюйм		RC 1/2"								
Патрубок отвода дренажа мм		Пластиковый патрубок ОD ∅32								
Напор дренажного насоса мм вод.ст.		750								
Запорно-регулирующий узел			ЗРУ-Р4.02-2 или ЗРУ-Р2.82-1 (для трубопровода хладоносителя) / ЗРУ-Р4.04-2 или ЗРУ-Р2.84-1 (для трубопровода теплоносителя), стр. 78							


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °С по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 70 °C;
- расход воды и воздуха такой же, как в режиме охлаждения ■ Максимальная температура горячей воды на входе 70 °C.

Габаритные размеры

Полное описание систем управления — на стр. 81–85.

Групповой контроль

DC мотор вентилятора

Данный тип фанкойлов предназначен для установки на пол, вдоль стены или под потолок. Такие способы размещения значительно упрощают последующее обслуживание и эксплуатацию. Низкий уровень шума, привлекательный дизайн корпуса, простота установки, а также компактные размеры (глубина всего 200 мм) делают напольно-потолочные фанкойлы интересным решением для помещений различного назначения.

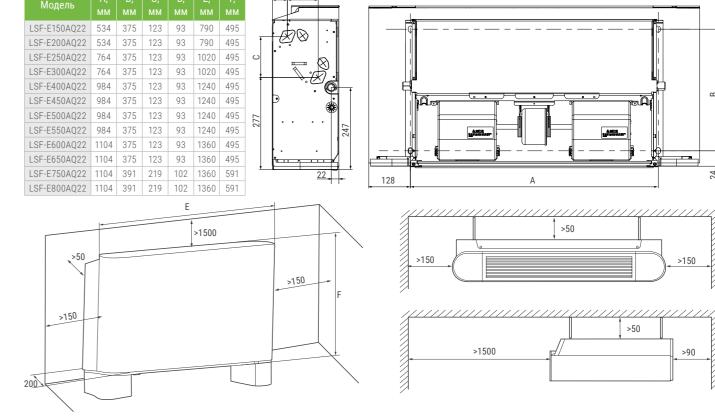
Особенности

- DC-мотор вентилятора.
- Возможность монтажа на пол или под потолок.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Сниженное гидравлическое сопротивление теплообменника.
- Компактные размеры (глубина 200 мм).
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).

Опции

- Пульт управления LZ-ERPW2 проводной.
- Пульт управления LZ-UPW7 центральный сенсорный (на фанкойле необходим порт XYE (опция)).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 81–85).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. стр. 83–85).
- Опора LZ-FQL2 для установки на пол.

Технические характеристики -


			E150AQ22	E200AQ22	E250AQ22	E300AQ22	E400AQ22	E450AQ22	E500AQ22	E550AQ22	E600AQ22	E650AQ22	E750AQ22	E800AQ2
Холодопроизвод	ительность	кВт	1,50	1,95	2,35	2,85	3,50	3,90	4,30	4,85	5,60	6,35	7,35	8,25
Теплопроизводи	тельность	кВт	1,57	2,05	2,60	2,95	3,80	4,00	4,70	5,25	6,00	7,05	8,05	8,70
Потребляемая м	ЮЩНОСТЬ	Вт	15	20	17	20	26	29	50	52	96	92	113	102
D.	Охлаждение	л/ч	260	330	400	490	600	670	740	830	960	1090	1270	1430
Расход воды	Обогрев	л/ч	270	350	450	510	650	700	810	910	1040	1220	1390	1510
Гидравлическое	Охлаждение	кПа	13,9	27,2	13,3	26,0	34,1	37,4	54,2	54,3	50,7	32,8	44,1	71,4
сопротивление	Обогрев	кПа	15,1	25,3	14,3	24,4	35,1	36,5	54,3	53,4	55,5	37,6	46,9	62,6
Максимальное рабочее мПа давление воды								1,	6					
Электропитание ф/В/Г				1/220/50										
Объем рециркулируемого м ³ /ч		м³/ч	255	255	400	425	595	595	790	800	1190	1190	1360	1300
Количество вентиляторов шт.		ШТ.	1	1	2	2	2	2	2	2	3	3	3	3
Уровень звуково высокой скорост		дБ(А)	34	39	29	32	38	40	46	45	50	50	51	50
Уровень звуково низкой скорости	ого давления на І	дБ(А)	21	25	28	19	23	30	30	30	31	31	33	33
Внутренний блок	<													
Размеры без упа	аковки (Ш×В×Г)	MM	790×4	95×200	1020×4	95×200 1240×495×200					1360×495×200			91×200
Размеры в упакс	овке ($\mathbb{U} \times \mathbb{B} \times \Gamma$)	MM	895×5	95×300	1125×5	95×300		1345×5	95×300		1465×5	595×300	1465×6	95×300
Масса нетто		ΚΓ	18,0	18,5	21,5	22,0	25,5	26,5	25,5	26,5	28,5	29,5	32,5	34,5
Масса брутто		ΚΓ	23,5	24,0	27,5	28,0	32,5	33,5	32,5	33,5	36,0	37,0	41,0	42,5
Соединительные	е трубы													
Вход воды дюйм					G 3/4"									
Выход воды	дюйм		G 3/4"											
Патрубок отвода	а дренажа	MM		Пластиковый патрубок OD Ø18,5										
Запорно-регулирующий узел ЗРУ-Р4.05-2 или ЗРУ-2.85-1, стр. 78														

Примечания

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
 Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 27 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе/выходе 45/40 °C; ■ Максимальная температура горячей воды на входе 75 °C.

Габаритные размеры

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

DC фанкойлы LSF-E...AQ22C

напольно-потолочные двухтрубные без корпуса

Полное описание систем управления — на стр. 81-85.

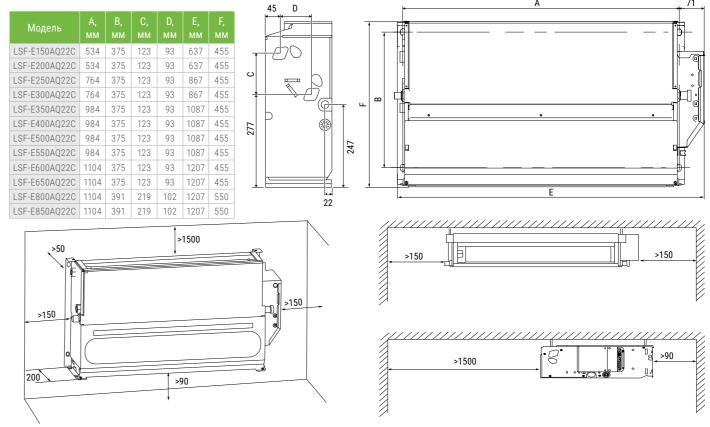
Такой тип фанкойлов предназначен для установки на пол, вдоль стены или под потолок. Низкий уровень шума, простота установки, а также компактные размеры (глубина всего 200 мм) делают данный фанкойл интересным решением для помещений различного назначения.

Особенности

- DC-мотор вентилятора.
- Возможность скрытого монтажа.
- Мощный воздушный поток: фанкойл направляет сильную струю воздуха вверх вдоль стены или потолка.
- Тихая работа: фанкойл оборудован радиальным вентилятором для большей эффективности и низкого уровня шума.
- Легкая конструкция и простая система крепления.
- Компактные размеры (глубина 200 мм).
- Функция сохранения последних настроек в случае перебоев с электропитанием (AutoRestart).

Опции

- Пульт управления LZ-ERPW2 проводной.
- Пульт управления LZ-UPW7 центральный сенсорный (на фанкойле необходим порт ХҮЕ (опция)).
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83-85).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (на фанкойле необходим порт PQE (опция)) (подробнее на стр. 85).


Технические характеристики

			E150AQ22C	E200AQ22C	E250AQ22C	E300AQ22C	E350AQ22C	E400AQ22C	E500AQ22C	E550AQ22C	E600AQ22C	E650AQ22C	E800AQ22C	E850AQ22
Холодопроизвод	цительность	кВт	1,50	1,95	2,35	2,85	3,50	3,90	4,30	4,85	5,60	6,35	7,35	8,25
Теплопроизводи	тельность	кВт	1,57	2,05	2,60	2,95	3,80	4,00	4,70	5,25	6,00	7,05	8,05	8,70
Потребляемая м	ЮЩНОСТЬ	Вт	15	20	17	20	26	29	50	52	96	92	113	102
	Охлаждение	л/ч	260	330	400	490	600	670	740	830	960	1090	1270	1430
Расход воды	Обогрев	л/ч	270	350	450	510	650	700	810	910	1040	1220	1390	1510
Гидравлическое	Охлаждение	кПа	13,9	27,2	13,3	26,0	34,1	37,4	54,2	54,3	50,7	32,8	44,1	71,4
сопротивление	Обогрев	кПа	15,1	25,3	14,3	24,4	35,1	36,5	54,3	53,4	55,5	37,6	46,9	62,6
Максимальное рабочее мП давление воды								1,	,6					
Электропитание ф/В/				1/220/50										
Объем рециркул воздуха	ируемого	м³/ч	255	255	400	425	595	595	790	800	1190	1190	1360	1300
Внешнее статическое давление		Па	12	12	12	12	12	12	12	12	12	12	12	12
Количество вентиляторов		ШТ.	1	1	2	2	2	2	2	2	3	3	3	3
Уровень звуково высокой скорос		дБ(А)	34	39	29	32	38	40	46	45	50	50	51	50
Уровень звуково низкой скорости		дБ(А)	21	25	18	19	23	30	30	30	31	31	33	33
Внутренний блок														
Размеры без упа	аковки ($\mathbb{H} \times \mathbb{B} \times \Gamma$)	MM	637×4	55×200	867×45	55×200	1087×455×200				1207×4	55×200	1207×5	50×200
Размеры в упако	овке ($\mathbb{U} \times \mathbb{B} \times \Gamma$)	MM	755×5	55×255	985×5	55×255		1205×5	55×255		1325×5	55×255	1325×6	50×255
Масса нетто		КГ	11,8	12,1	13,9	14,8	17,3	18,2	17,3	18,2	19,6	20,8	23,1	24,3
Масса брутто		КГ	16,1	16,4	19,4	20,3	24,0	24,9	24,0	24,9	26,4	27,6	30,2	31,4
Вход воды		дюйм						G 3	3/4"					
Выход воды		дюйм						G 3	3/4"					
Патрубок отвода	дренажа	MM	Пластиковый патрубок OD ∅ 18,5											
Запорно-регулир	ующий узел						ЗРУ-Р	4.05-2 или 3	ЗРУ-2.85-1,	тр. 78				

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях
- температура воздуха на входе 27 °C по сухому термометру; — температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C.
- внешнее статическое давление воздуха 12 Па

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 20 °C по сухому термометру; температура воды на входе/выходе 45/40 °C;
- Максимальная температура горячей воды на входе 75 °C.

Габаритные размеры

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

DC фанкойлы LSF-E...DQ22

канальные низконапорные двухтрубные

Полное описание систем управления — на стр. 81-85.

DC мотор вентилятора

Охлаждение

Нагрев

2-трубный фанкой

Групповой контроль

нтроль DC мотор ве

Модельный ряд фанкойлов с возможностью выбора внешнего статического давления 12 Па, 30 Па и 50 Па. Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами. Таким образом, не нарушается дизайн интерьера, так как на виду остаются лишь декоративные решетки.

Особенности

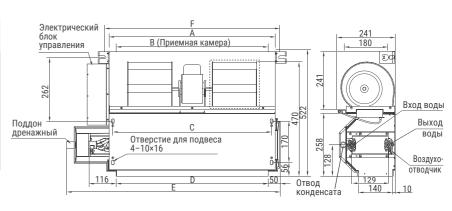
- Возможность выбора внешнего статического давления 12 Па, 30 Па и 50 Па.
- DC-мотор вентилятора.
- Возможность настройки внешнего статического давления на плате управления фанкойлом.
- Воздушный фильтр в стандартной комплектации.
- Подключение труб с правой или с левой стороны по предварительному заказу.
- Возможность подмеса наружного воздуха.
- Компактная конструкция поддона для отвода конденсата
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83-85).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 85).

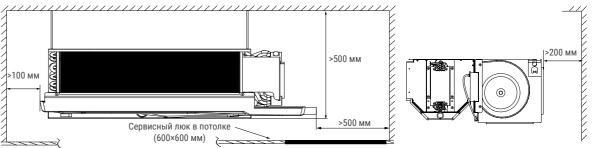
ОПЦИИ

- Пульт управления LZ-UQPW2 проводной.
- Блок управления LZ-FEM2.
- Пульт управления LZ-URPL2 беспроводной (совместно с LZ-FEM2)
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FEM2).
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Подключение трубопровода хладоносителя справа (стандартно) или слева (опционально).

Технические характеристики –

			E200DQ22	E300DQ22	E400DQ22	E500DQ22	E600DQ22	E800DQ22	E1000DQ22	E1200DQ22			
Холодопроизводите	ельность	кВт	2,02	2,82	3,31	3,83	4,78	6,70	7,92	9,83			
Теплопроизводител	1ЬНОСТЬ	кВт	2,98	4,12	4,91	5,60	7,19	9,87	11,63	14,58			
Потребляемая мош	иность (охлаждение)	Вт	18	25	29	42	53	62	93	136			
Потребляемая мош	іность (обогрев)	Вт	19	25	31	45	58	66	99	119			
Расход воды (охлаж		л/ч	370	510	590	680	850	1190	1430	1740			
Гидравлическое	Охлаждение	кПа	6,3	14,2	19,4	23,7	14,2	15,1	23,2	50,3			
сопротивление	Обогрев	кПа	7,91	15,39	23,00	29,04	19,88	19,36	26,68	60,70			
Максимальное раб	очее давление воды	МПа											
Электропитание		ф/В/Гц	*										
Объем рециркулиру	уемого воздуха	м³/ч	439	615	792	887	1081	1492	1824	2327			
Внешнее статическ	ое давление	Па		Выбор уста	12 Па вки на 30 Па ил	— заводская с и 50 Па осущес			я фанкойлом	,			
Количество вентиляторов шт			1	2	2	2	2	4	4	4			
Уровень звукового скорости	давления на высокой	дБ(А)	37,5	40,3	41,1	44,6	46,1	47,7	50,2	50,9			
Уровень звукового скорости	давления на низкой	дБ(А)	24,0	26,7	26,8	29,4	29,9	31,1	33,0	33,8			
Размеры без упако	вки (Ш×В×Г)	MM	741 × 241 × 522	841 × 241 × 522	941 × 241 × 522	941 × 241 × 522	1161 × 241 × 522	1461 × 241 × 522	1566 × 241 × 522	1856 × 241 × 52			
Размеры в упаковк	e (Ш×В×Г)	MM	790×260×555	890×260×560	990×260×560	990×260×560	1210 × 260 × 560	1510 × 260 × 560	1615 × 260 × 560	1905 × 260 × 50			
Масса нетто		КГ	16,5	18,5	20,0	20,0	22,2	31,4	32,5	37,5			
Масса брутто		КГ	19,0	21,4	23,2	23,2	26,0	35,8	37,2	42,8			
Вход воды		дюйм	дюйм RC 3/4"										
Выход воды		дюйм	дюйм RC 3/4"										
Патрубок отвода др	ренажа	дюйм	дюйм R 3/4"										
Запорно-регулирую	щий узел				31	РУ-Р4.02-2 или	ЗРУ-2.82-1, стр.	78					


Примечания


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру;
- температура воды на входе/выходе 7/12 °C. — внешнее статическое давление воздуха 12 Па.

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C;
- расход воды и воздуха такой же, как в режиме охлаждения
 Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

Модель	А, мм	В,	С,	D, мм	Е, мм	F , мы
LSF-E200DQ22	545	485	513	485	741	583
LSF-E300DQ22	645	585	613	585	841	683
LSF-E400DQ22	745	685	713	685	941	783
LSF-E500DQ22	745	685	713	685	941	783
LSF-E600DQ22	965	905	933	905	1161	1003
LSF-E800DQ22	1265	1205	1233	1205	1461	1303
LSF-E1000DQ22	1370	1310	1338	1310	1566	1408
LSF-E1200DQ22	1660	1600	1628	1600	1856	1698

Примонациа

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

DC фанкойлы LSF-E...DR22

канальные низконапорные двухтрубные

Полное описание систем управления — на стр. 81-85.

Групповой контроль DC мотор вентилятора

Новый модельный ряд фанкойлов с возможностью выбора внешнего статического давления 12 Па, 30 Па и 50 Па. Канальные фанкойлы используются, как правило, для скрытого монтажа, зачастую совместно с воздуховодами. Таким образом, не нарушается дизайн интерьера, так как на виду остаются лишь декоративные решетки.

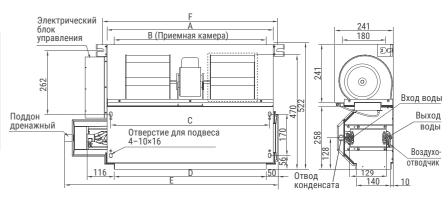
Особенности

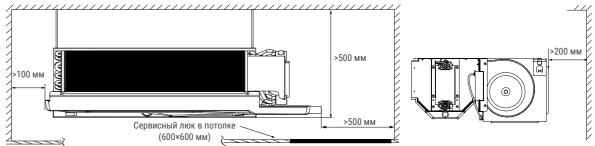
- Возможность выбора внешнего статического давления 12 Па, 30 Па и 50 Па.
- DC-мотор вентилятора
- Возможность настройки внешнего статического давления на плате управления фанкойлом.
- Воздушный фильтр в стандартной комплектации.
- Подключение труб с правой или с левой стороны по предварительному заказу.
- Возможность подмеса наружного воздуха.
- Компактная конструкция поддона для отвода конден-
- Возможность группового контроля (до 64 фанкойлов с одного пульта LZ-UPW7) (подробнее на стр. 83-85).
- Возможность подключения к системе BMS по сетевому протоколу Modbus RTU (подробнее на стр. 85).

Опции

- Пульт управления LZ-UQPW2 проводной.
- Блок управления LZ-FEM2.
- Пульт управления LZ-URPL2 беспроводной (совместно
- Пульт управления LZ-UPW7 центральный сенсорный (совместно с LZ-FEM2).
- Пульт управления LZ-UQPG2 проводной с Modbus RTU.
- Подключение трубопровода хладоносителя справа (стандартно) или слева (опционально).

Технические характеристики –


			E200DR22	E300DR22	E400DR22	E500DR22	E600DR22	E800DR22	E1000DR22	E1200DR22			
Холодопроизводите	льность	кВт	2,35	3,12	3,99	4,46	5,85	8,02	8,96	10,79			
Теплопроизводител	ьность	кВт	3,17	4,51	5,52	6,26	7,84	10,88	12,61	14,90			
Потребляемая мощ	ность (охлаждение)	Вт	17	23	26	39	49	60	96	106			
Потребляемая мощ	ность (обогрев)	Вт	18	23	28	43	52	65	99	114			
Расход воды (охлаждение)			430	600	690	790	1050	1420	1590	1930			
Гидравлическое Охлаждение		кПа	13,6	23,8	13,0	16,4	31,4	31,6	24,1	26,3			
сопротивление	Обогрев	кПа	10,3	19,2	10,8	13,7	26,4	26,3	21,1	22,6			
Максимальное рабо	очее давление воды	МПа	1,6										
Электропитание		ф/В/Гц											
Объем рециркулиру	емого воздуха	м³/ч	411	531	734	865	1022	1452	1824	2134			
Внешнее статическо	ре давление	Па		Выбор устав			тандартная уст гвляется на пла		фанкойлом.				
Количество вентиляторов			1	2	2	2	2	4	4	4			
Уровень звукового , скорости	давления на высокой	дБ(А)	38,1	36,4	38,4	44,3	46,1	44,9	47,8	48,9			
Уровень звукового , скорости	давления на низкой	дБ(А)	23,4	20,7	24,0	27,9	30,3	27,7	30,7	31,7			
Внутренний блок													
Размеры без упаков	вки (Ш×В×Г)	MM	741 × 241 × 522	841 × 241 × 522	941 × 241 × 522	941 × 241 × 522	1161 × 241 × 522	1461 × 241 × 522	1566 × 241 × 522	1856 × 241 × 522			
Размеры в упаковке	e (Ш×B×Γ)	MM	790×260×555	890×260×560	990×260×560	990×260×560	1210 × 260 × 560	1510 × 260 × 560	1615 × 260 × 560	1905 × 260 × 560			
Масса нетто		КГ	16,7	19,0	21,0	21,0	23,7	33,0	34,7	39,2			
Масса брутто		КГ	19,7	22,0	24,0	24,0	27,2	37,2	39,2	44,4			
Вход воды		дюйм	дюйм RC 3/4"										
Выход воды		дюйм	дюйм RC 3/4"										
Патрубок отвода др	енажа	дюйм	юйм R 3/4"										
Запорно-регулирую	щий узел				31	РУ-Р4.02-2 или 3	ЗРУ-2.82-1, стр.	78					


- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значения холодопроизводительности даны на высокой скорости вентилятора
- температура воздуха на входе 27 °C по сухому термометру;
- температура воздуха на входе 19 °C по влажному термометру; — температура воды на входе/выходе 7/12 °C.
- внешнее статическое давление воздуха 12 Па

- Шумовые данные получены замером в полубезэховой комнате.
- Значения теплопроизводительности даны на высокой скорости вентилятора при условиях:
- температура воздуха на входе 20 °C по сухому термометру;
- температура воды на входе 50 °C; расход воды и воздуха такой же, как в режиме охлаждения.
- Максимальная температура горячей воды на входе 80 °C.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм
LSF-E200DR22	545	485	513	485	741	583
LSF-E300DR22	645	585	613	585	841	683
LSF-E400DR22	745	685	713	685	941	783
LSF-E500DR22	745	685	713	685	941	783
LSF-E600DR22	965	905	933	905	1161	1003
LSF-E800DR22	1265	1205	1233	1205	1461	1303
LSF-E1000DR22	1370	1310	1338	1310	1566	1408
LSF-E1200DR22	1660	1600	1628	1600	1856	1698

- Количество вентиляторов, изображенных на чертеже, зависит от модели фанкойла.
- Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомлени

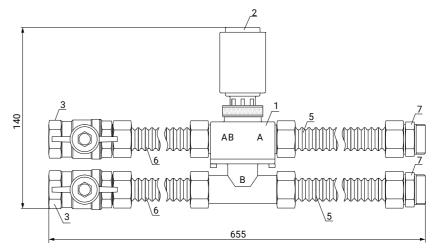
Запорно-регулирующие узлы ЗРУ-Р

Запорно-регулирующие узлы для фанкойлов предназначены для подачи или отключения потоков хладоносителя и теплоносителя от источника к фанкойлу. Основным компонентом комплекта является 3-ходовой клапан, использование которого позволяет сохранить общий расход в сети хладоносителя и теплоносителя. Для обвязки фанкойлов LESSAR рекомендуется использовать комплекты запорно-регулирующих узлов **ЗРУ-Р**. Комплекты ЗРУ-Р представляют собой набор подготовленных компонентов запорно-регулирующего узла, сборка которых на объекте займет всего лишь несколько минут и не требует привлечения высококлассных специалистов.

Маркировка запорно-регулирующих узлов

- 3РУ запорно-регулирующий узел
- **2** Р комплект для сборки
- **3** Значение K_{vs} 3-ходового клапана

- 4 Номер модели
- 5 Модификация

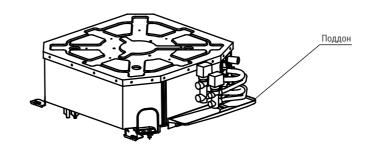

Таблица соответствия 2-трубных фанкойлов и запорно-регулирующих узлов

Модель фанкойла	Модель узла для самостоятельной сборки	K _{vs}	Модель узла для самостоятельной сборки	K _{vs}	Диаметр соединения с фанкойлом	Поддон для сбора конденсата
LSF-EBQ22C	3PY-P4.02-2				HP 3/4*	LZ-BDD42 (C)
LSF-EBQ22						LZ-BDD42
LSF-E.DQ22		4.0	3PY-P2.82-1	2,8		_
LSF-E.DR22		4,0				_
LSF-E.AQ22C	ODV D4 05 0		2DV D0 0F 1			_
LSF-E.AQ22	3PY-P4.05-2		3PY-P2.85-1			_

Таблица соответствия 4-трубных фанкойлов и запорно-регулирующих узлов

Модель фанкойла	Модель узла для самостоятельной сборки	K _{vs}	Модель узла для самостоятельной сборки	K _{vs}	Диаметр соединения с фанкойлом	Поддон для сбора конденсата
LSF-EBQ42C	Для трубопровода хладоносителя ЗРУ-Р4.02-2	4,0	Для трубопровода хладоносителя ЗРУ-Р2.82-1	2,8	НР 3/4" — охлаждение	LZ-BDD42 (C)
LSF-EBQ42	+ Для трубопровода теплоносителя ЗРУ-Р4.04-2	4,0	+ Для трубопровода теплоносителя ЗРУ-Р2.84-1	2,8	HP 1/2" — обогрев	LZ-BDD42

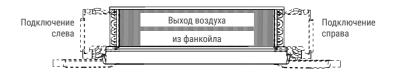
Запорно-регулирующий узел серии ЗРУ-Р


Nº	Наименование	Количество
1	Клапан 4-ходовой DN20, Kvs=4 (VFX437)	1
2	Привод клапана электротермический (SE1TP230)	1
3	Кран шаровой с вн./нар. резьбой 3/4", R914X024	2
4	Резиновая прокладка для трубы 19 M	8
5	Подводка гибкая, Ду19, L= 0,36 м	2
6	Подводка гибкая, Ду19, L= 0,12 м	2
7	Ниппель 3/4" нарнар.	2

Примечания

- На данном чертеже представлен запорно-регулирующий узел ЗРУ-Р4.02-2.
- Резьбовые соединения уплотняются анаэробным герметиком, входящим в комплект поставки.
- Если запорно-регулирующий узел выступает за поддон фанкойла, во избежание протечек конденсата выступающую часть узла необходимо изолировать теплоизоляцией соответствующего типа.
- В комплект поставки не входит тепловая изоляция и прочие расходные материалы.
- Состав обвязок может быть изменен производителем без предварительного уведомления.

Поддон для сбора конденсата (внешний) для кассетных фанкойлов (опция)


При заказе запорно-регулирующего узла рекомендуем доукомплектовать кассетный фанкойл внешним поддоном для сбора конденсата (опция), чтобы избежать протечек конденсата, образующегося на запорно-регулирующем узле.

Поддон для сбора конденсата (внешний) и запорнорегулирующий узел смонтированы на кассетном фанкойле.

Как определить сторону подключения фанкойла

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

3-ходовой клапан с приводом LZ-V2(4)

Помимо запорно-регулирующих узлов ЗРУ-Р для самостоятельной сборки, LESSAR предлагает комплекты **LZ-V,** состоящие из 3-ходового клапана и термопривода. Использование данных комплектов позволяет значительно экономить, не переплачивая за компоненты, которые не планируется использовать, а также дает возможность не ограничиваться длиной соединительных патрубков при проектировании.

Таблица соответствия 2-трубных фанкойлов и комплектов LZ-V

Модель фанкойла	Модель узла	Диаметр соединений	Поддон для сбора конденсата
LSF-EBQ22C			LZ-BDD42 (C)
LSF-EBQ22			LZ-BDD42
LSF-EDQ22	17.40	0.074	_
LSF-EDR22	LZ-V2	G 3/4"	_
LSF-EAQ22			_
LSF-EAQ22C			_

Таблица соответствия 4-трубных фанкойлов и комплектов LZ-V

Модель фанкойла	Модель узла	Диаметр соединений	Поддон для сбора конденсата
LSF-EBQ42C	Для трубопровода хладоносителя LZ-V2	G 3/4" — охлаждение	LZ-BDD42 (C)
LSF-EBQ42	+ Для трубопровода теплоносителя LZ-V4	G 1/2" — обогрев	LZ-BDD42

Аксессуары для DC фанкойлов

Пульты управления беспроводные

LZ-URPL2 (опция)

Беспроводной пульт для дистанционного управления настенными, кассетными, канальными фанкойлами.

Применяется для управления:

- настенными фанкойлами серии LSF-E...KQ22;
- компактными кассетными фанкойлами серий LSF-Е...BQ22C, и LSF-Е... BQ42C:
- кассетными фанкойлами серий LSF-E...BQ22 и LSF-E...BQ42;
- канальными совместно с LZ-FEM2.

LZ-UTPL2 (опция)

Пульт управления беспроводной предназначен для дистанционного управления работой фанкойлов.

Применяется для управления:

• кассетными фанкойлами серий LSF-E...BQ22 и LSF-E...BQ42.

Аксессуары для DC фанкойлов

Пульты управления проводные

LZ-ERPW2 (опция)

Проводной пульт управления сенсорный для управления напольно-потолочными фанкойлами.

Применяется для управления:

- напольно-потолочными фанкойлами без корпуса серии LSF-E...AQ22C;
- напольно-потолочными фанкойлами серии LSF-E...AQ22.

LZ-UQPW2 (опция) -

Проводной пульт управления сенсорный для управления канальными фанкойлами.

Применяется для управления:

канальными двухтрубными фанкойлами серии LSF-Е...DQ22 и LSF-Е...

LZ-HJPW (в комплекте)

Пульт управления проводной сенсорный.

Позволяет задавать режимы работы фанкойла, устанавливать время включения и отключения, регулировать направление жалюзи (для моделей с регулируемыми жалюзи).

Содержит приемник ИК-сигналов беспроводного пульта управления LZ-URPL2.

Применяется для управления:

- настенными фанкойлами серии LSF-E...KQ22;
- компактными кассетными фанкойлами серий LSF-Е...BQ22C и LSF-Е... BQ42C;
- кассетными фанкойлами серий LSF-E...BQ22 и LSF-E...BQ42.

LZ-UQPG2 (опция)

Проводной пульт управления сенсорный для управления канальными фанкойлами по Modbus RTU. Максимальное количество подключаемых фанкойлов по Modbus RTU — 32 шт.

Применяется для управления:

■ канальными двухтрубными фанкойлами серии LSF-E...DQ22 и LSF-E... DR22.

Аксессуары для DC фанкойлов

Системы группового контроля и управления

LZ-UPW7 пульт управления центральный сенсорный (опция)

Предназначен для централизованного управления группой фанкойлов. С одного пульта возможно управление в индивидуальном и общем режимах (до 64 фанкойлов).

Применяется для управления:

- настенными фанкойлами серии LSF-E...KQ22;
- компактными кассетными фанкойлами серий LSF-Е...BQ22C и LSF-Е... BQ42C (на фанкойле необходим порт XYE (опция));
- кассетными фанкойлами серий LSF-Е...BQ22 и LSF-Е...BQ42 (на фанкойле необходим порт XYE (опция));
- канальными фанкойлами серии LSF-E...DQ22 и LSF-E...DR22 совместно с LZ-FEM2;
- напольно-потолочными фанкойлами серии LSF-E...AQ22 и LSF-E...AQ22C (на фанкойле необходим порт XYE (опция)).

LZ-ULZW контроллер для подключения к системе доступа в помещение (опция) –

Индивидуальный проводной модуль. Подключается к гостиничному модулю чтения ключ-карт с сухими контактами. Предназначен для контроля работы оборудования в отелях. Включает фанкойл при наличии ключкарты в модуле чтения и отключает фанкойл, если ключ-карту вынуть из модуля чтения.

- При использовании пульта LZ-UPW7, автоматическое возобновление ранее установленных настроек фанкойла требует дополнительной преднастройки.
- В случае совместного применения с проводными пультами контроллер выдерживает паузу в 3 секунды и отправляет приказ на включение в том же режиме и при тех же настройках, что были при выключении.

LZ-FEM2 блок управления (опция)

Блок управления (система группового управления) предназначен для организации управления работой двухтрубных фанкойлов с беспроводного пульта управления LZ-URPL2. Блок управления LZ-FEM2 имеет встроенный сетевой модуль для подключения фанкойлов к системе централизованного управления с центрального пульта LZ-UPW7. Также блок управления LZ-FEM2 имеет возможность подключения фанкойлов к системе BMS по сетевому протоколу Modbus RTU.

В комплект входит пульт управления LZ-UPW4.

Применяется для управления:

■ канальными фанкойлами серий LSF-E...DQ22, LSF-E...DR22.

LZ-UPW4 (входит в комплект LZ-FEM2)

Пульт проводной LZ-UPW4 для управления фанкойлами канального типа. Входит в комплект блока управления LZ-FEM2.

Применяется для управления:

■ канальными фанкойлами серий LSF-E...DQ22, LSF-E...DR22.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Аксессуары для DC фанкойлов

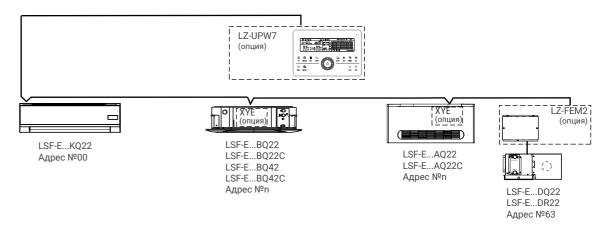
Панели для кассетных фанкойлов

LZ-FRB42 (опция)

Новый дизайн панели с распределением воздушного потока 360° и индивидуальным управлением каждого жалюзи предоставляет возможность создать более высокий уровень комфорта в помещении. (Необходим пульт LZ-UTPL2).

Применяется для кассетных фанкойлов серий LSF-E...BQ22 и LSF-E...BQ42.

LZ-FRB2 (опция)



Новый дизайн панели с распределением воздушного потока 360° без индивидуального управления каждого жалюзи.

Применяется для кассетных фанкойлов серий LSF-E...BQ22 и LSF-E...BQ42.

Принципиальные схемы централизованного управления DC фанкойлами

Принципиальная схема централизованного управления DC фанкойлами LESSAR с центрального пульта управления LZ-UPW7. Перед оформлением заказа рекомендуется связаться со службой поддержки для получения консультации по тел. 8 800-333-0495 или отправить запрос по электронной почте на адрес: chiller@lessar.com.

Принципиальная схема централизованного управления DC фанкойлами LESSAR по протоколу Modbus RTU. Перед оформлением заказа рекомендуется связаться со службой поддержки для получения консультации по тел. 8 800-333-0495 или отправить запрос по электронной почте на адрес: chiller@lessar.com.

Примечания

- Пунктирной линией выделены опциональные компоненты.
- Одновременное управление с центрального пульта и через протокол Modbus RTU не поддерживается.
- * Сервер Modbus приобретается у сторонних производителей.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

LESSAR PROF ЧИЛЛЕРЫ

Чиллеры LESSAR

Модельный ряд чиллеров торговой марки **LESSAR** состоит из чиллеров, которые изготавливаются на не очень удобным фактором при работе с торговой маркой LESSAR. Многолетний опыт работы на рынке клиговой марки LESSAR сформировать новый модельный ряд чиллеров, относящихся к классу Optima, который

Чиллеры LESSAR давно зарекомендовали себя на рынках России и стран СНГ как надежное и качественное города Санкт-Петербург, сеть отелей «Holiday Inn», сеть гипермаркетов «МАКСИДОМ», сеть гипермаркетов

Чиллер — это высокоэффективная и компактная холодильная машина, предназначенная для охлаждения или нагрева воды или водно-гликолевых растворов. Благодаря высокой надежности, большому выбору типоразмеров и опций, чиллер способен решать самые сложные задачи по созданию микроклимата в бизнес-центрах, офисных и крупных административно-бытовых зданиях, спортивных сооружениях и торгово-развлекательных комплексах, а также в системах кондиционирования и холодоснабжения предприятий металлургической, химической, машиностроительной, электронной и других отраслей промышленности. Чиллеры необходимо подбирать индивидуально, исходя из требований к работе водоохладителя.

Чиллеры LESSAR можно классифицировать по следующим основным признакам:

- По типу компрессоров спиральные, ротационные, винтовые, центробежные.
- По типу охлаждения конденсатора с водяным или воздушным охлаждением.
 - При воздушном охлаждении конденсатор обдувается потоком воздуха от вентилятора. При водяном охлаждении конденсатор охлаждается проточной либо оборотной водой. Охлаждение проточной водой позволяет существенно уменьшить габариты и стоимость чиллера, оборотное охлаждение требует установки дополнительного оборудования (сухих охладителей, градирен, насосов).
- По типу вентиляторов.
- По наличию режима обогрева с тепловым насосом (реверсивные) и без него.
- По конструктивному исполнению:
 - со встроенным или с выносным воздушным конденсатором;
 - для наружной или внутренней установки;
 - с наличием или отсутствием гидромодуля.

Чиллер со встроенным воздушным конденсатором представляет собой моноблочную холодильную машину, к которой подключаются только электропитание и трубопроводы от насосной станции. В случае с выносным сухим охладителем (драйкулером) холодильная система состоит из двух блоков, что позволяет устанавливать чиллер внутри помещения, а сухой охладитель выносить на крышу.

Модельный ряд чиллеров LESSAR класса **ОРТІМА** представлен следующими новыми моделями:

- LUC-EHAA...CAP чиллеры моноблочные с воздушным охлаждением конденсатора с DC инверторным компрессором со встроенным гидромодулем
- LUC-FHAA...CA-В чиллеры модульные с воздушным охлаждением конденсатора со спиральными компрес-
- LUC-VS...CXF-FC(-I) чиллеры модульные с воздушным конденсатором с инверторным винтовым компрессором с системой Free Cooling
- LUC-SSA(D)W...CXF-(B)(-M) чиллеры с водяным охлаждением конденсатора с винтовыми компрессорами с пуском звезда/треугольник
- LUC-VSA(D)W...CXF чиллеры с водяным охлаждением конденсатора с инверторными винтовыми компрессо-
- LUC-CSTW...CXM-B чиллеры с водяным охлаждением конденсатора с центробежными компрессорами на подшипниках скольжения с электромотором на 380 В
- LUC-CSTW...BXM-B чиллеры с водяным охлаждением конденсатора с центробежными компрессорами на подшипниках скольжения с электромотором на 10 000 В

При изготовлении чиллеров LESSAR используются самые передовые технологии, которые позволяют с максимальной эффективностью выполнять задачи, возложенные на оборудование. Научно-исследовательконтроля качества производственных площадок LESSAR — все вместе позволяют оборудованию и бренду всегда удерживать лидирующие по зиции на высококонкурентном рынке климатического оборудования.

Производство чиллеров **LESSAR** осуществляется на современных заводах, имеющих свои тестовые лабо ратории и научно-исследовательские центры. В процессе производства и сборки чиллеров осуществляется тщательный контроль качества. Готовые чиллеры проходят различные испытания, в том числе на плотность

Постоянная потребность в совершенствовании модельного ряда для улучшения потребительских свойств чиллеров нашла отражение в обновлении модульных чиллеров со спиральными компрессорами серии LUC-FHA(D)A...CA-В с воздушным охлаждением конденсатора и возможностью объединения до 16 модулей в систему. Обновленные модели холодопроизводительностью 65 кВт и 130 кВт стали еще более энергоэффективными, сохранив массогабаритные показатели. Подробное описание данных моделей см. на стр. 104 каталога и на официальном сайте lessar.com.

Чиллеры модульные LESSAR

с воздушным конденсатором со спиральными компрессорами

Обновлению также подверглись две модели чиллеров LUC-FHMA340CA(C)(P)-В и LUC-FHMA460CA(C)(P)-В, работающие только в режиме охлаждения, холодопроизводительностью 340 и 460 кВт. Это модульные чиллеры с воздушным конденсатором со спиральными компрессорами и встроенным насосным гидравлическим модулем (опция). Отличительными особенностями этого обновленного оборудования являются удобная конструкция, качественные компоненты, более высокая энергоэффективность и надежность.

Подробное описание данной модели см. на стр. 106 каталога и на официальном сайте lessar.com.

Чиллеры моноблочные LESSAR

с воздушным конденсатором с DC инверторными ротационными компрессорами и встроенным гидромодулем

Новая серия чиллеров моноблочной конструкции LUC-ЕНАА... CAP с воздушным охлаждением конденсатора с DC инверторными компрессорами и вентиляторами со встроенным гидромодулем позволяют сэкономить место при монтаже и могут применяться в системах холодоснабжения от 20 до 32 кВт. Плавное регулирование холодопроизводительности, сниженное энергопотребление и низкий уровень шума — вот что выделяет этот модельный ряд чиллеров. Подробнее на стр. 92 каталога.

Маркировка чиллеров **LESSAR**

LUC - S S A A 360 C X F - B

- 1 LUC чиллер торговой марки LESSAR
- 2 Компрессор
 - спиральный компрессор с переменной производи-
 - F спиральный с постоянной производительностью R — ротационный с постоянной
 - производительностью Е — ротационный с переменной
 - производительностью
 - S винтовой
 - V инверторный винтовой
- С центробежный
- Тип компрессора
- Н герметичный
- S полугерметичный

- 4 Количество компрессоров
 - А один компрессор D — два компрессора
 - М мультикомпрессорный (≥3)
- Тип конленсатора А — встроенный конденсатор
- воздушного охлаждения W — встроенный конденсатор
- водяного охлаждения 6 Холодопроизводительность, кВт
- Тип электропитания
- А 6000 В / 50 Гц / 3 фазы
- В 10 000 В / 50 Гц / 3 фазы
- С 380 В / 50 Гц / 3 фазы
- D 220 В / 50 Гц / 1 фаза

- 8 Тип фреона A - R410A
 - X R134a
- Тип исполнения Н — стандартное исполнение
- М испаритель с пленочным кипением
- F испаритель затопленного типа
- Р встроенный гидромодуль
- W низкотемпературный комплект
- С только охлаждение
- Т для регионов с высокой температурой наружного воздуха
- 10 Модификация

Маркировка чиллеров с Free Cooling приведена на стр. 117 каталога

Чиллеры

моноблочные инверторные с воздушным конденсатором со встроенным гидромодулем

Для создания и поддержания комфортных условий в коттеджах, торговых павильонах, мини-гостиницах и офисных зданиях небольшой площади наряду с традиционными фреоновыми сплит-системами свое применение нашли и системы чиллер-фанкойл. Для удовлетворения спроса в данном сегменте климатической техники LESSAR предлагает моноблочные чиллеры с холодопроизводительностью от 20 до 82 кВт со встроенным гидромодулем.

Данные высокоэффективные моноблочные холодильные машины с реверсированием холодильного цикла и встроенным гидромодулем позволяют в зависимости от необходимости как охлаждать хладоноситель, так и нагревать его.

LESSOAR III

Чиллеры с воздушным охлаждением конденсатора устанавливают снаружи помещения на кровле здания, либо вблизи здания для снижения длины гидравлического контура хладоносителя.

Конструкция чиллера со встроенным гидромодулем позволяет применять чиллер, не задумываясь о размещении насоса и других необходимых компонентов, успешно использовать его для доставки хладо/теплоносителя к потребителю — все уже подобрано и смонтировано внутри чиллера. Моноблочное исполнение чиллера снижает капитальные затраты и упрощает монтаж: из инженерных коммуникаций необходимо только подвести и подсоединить трубы с хладоносителем и подключить электропитание, при этом не требуется использовать специализированное дорогостоящее оборудование для пайки и заправки холодильного контура хладагентом, поскольку чиллеры заправлены хладагентом и маслом на заводе.

Серия чиллеров LUC-EHAA...CAP с инверторным компрессором и встроенным гидромодулем обеспечивает плавное регулирование холодопроизводительности чиллера, а также снижение энергопотребления и шумовых характеристик. Достигается это за счет использования ротационных компрессоров с DC-инверторным приводом, электронный модуль которого преобразует переменный электрический ток питания в постоянный, и DC-моторов вентиляторов конденсатора.

Новые чиллеры моноблочные со встроенным гидромодулем LUC-EHAA...САР холодопроизводительностью от 20 до 32 кВт имеют еще более компактные габаритные размеры и внешне выглядят аналогично наружным блокам мультизональных систем.

Основные компоненты чиллеров LUC-EHAA...CAP

- Ротационные DC инверторные компрессоры Gree
- П-образный воздушный конденсатор с осевыми вентиляторами с DC электромоторами
- Кожухотрубный испаритель или типа «труба в трубе» в зависимости от модели чиллера
- Электронный расширительный вентиль
- Встроенный гидромодуль
- Реле протока воды
- Проводной пульт управления

Модельный ряд инверторных моноблочных чиллеров со встроенным гидромодулем LUC-E(I)HA(D)A...CAP с холодопроизводительностью от 20 до 82 кВт расширен за счет появления новых моделей и представлен в двух исполнениях.

Чиллеры инверторные моноблочные со встроенным гидромодулем с осевыми вентиляторами (исполнение 1)

 4 модели с холодопроизводительностью 20, 25, 28 и 32 кВт

Новые моноблочные чиллеры с осевыми вентиляторами разработаны с применением технологии DC-инвертор как в ротационных компрессорах Gree, так и в осевых вентиляторах конденсатора. Данная технология позволяет плавно изменять холодопроизводительность компрессора в широком диапазоне от 30 до 100%, повысив сезонную энергоэффективность чиллеров до 4,3. Компактность конструкции новых чиллеров достигнута благодаря высокой плотности расположения всех компонентов чиллера, включая встроенный гидромодуль, в вертикально ориентированную конструкцию корпуса с минимальной площадью для монтажа.

2. Чиллеры инверторные моноблочные со встроенным гидромодулем с осевыми вентиляторами (исполнение 2)

 3 модели с холодопроизводительностью 28, 55 и 82 кВт

Моноблочные чиллеры с осевыми вентиляторами, размещенными в горизонтальной плоскости, оснащены DC-инверторными компрессорами Mitsubishi Electric или DC-инверторными спиральными компрессорами Hitachi, и DC-инверторными моторами вентиляторов. Такое решение позволяет увеличить энергетическую эффективность холодильной машины, достичь плавности регулирования производительности, низкого уровня шума и работы чиллера при более низкой температуре наружного воздуха, до -10 °С в режиме охлаждения.

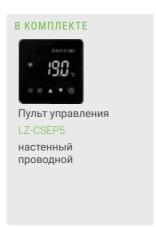
Внимание

В чиллерах в случае необходимости работы оборудования при отрицательных температурах наружного воздуха необходимо использовать незамерзающую водогликолевую смесь.

-90

Чиллеры LUC-EHAA...CAP

моноблочные с воздушным охлаждением конденсатора с DC-инверторным компрессором переменной производительности со встроенным гидромодулем



Чиллеры поставляются заправленными хладагентом R410A и маслом на заводе

Данная серия инверторных чиллеров со встроенным гидромодулем обеспечивает плавное регулирование холодопроизводительности чиллеров, а также снижение энергопотребления и шумовых характеристик при частичных тепловых нагрузках за счет использования ротационных компрессоров с DC-инверторным приводом и осевых вентиляторов с DC-моторами.

Наличие встроенного гидромодуля существенно упрощает монтаж, так как насос и основные элементы контура хладоносителя смонтированы внутри корпуса чиллера.

Корпус

Основание и сервисные панели сделаны из окрашенной стали. Каркас укомплектован сервисными панелями, обеспечивающими удобный доступ при проведении технического обслуживания.

Компрессор

Ротационный DC-инверторный компрессор торговой марки Gree.

Фреоновый контур

Включает в себя электронный расширительный клапан, 4-ходовой клапан, датчики защиты по высокому и низкому давлению, отделитель жидкости, фильтр.

Водяной теплообменник

Испаритель кожухотрубного типа либо типа «труба в трубе», в зависимости от модели.

Конденсатор

Конденсатор с воздушным охлаждением, состоящий из пучков медных труб с внутренней насечкой и алюминиевым оребрением.

Вентиляторы

Осевые вентиляторы с DC-мотором, пластиковыми крыльчатками и защитной решеткой.

Гидравлический модуль

Гидравлический модуль, состоящий из циркуляционного насоса Wilo, расширительного бака, реле протока, воздухоотводчика, предохранительного клапана.

Управлени

Управление осуществляется проводным пультом управления LZ-CSEP5 (входит в комплект), с которого возможно осуществление выбора режима работы чиллера, изменение основных параметров работы и отображение аварийных кодов. Максимальная длина провода 30 м.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

- в режиме охлаждения: от +10 до +52 °C;
- в режиме нагрева: от -20 до +35 °C.

Рабочий диапазон температуры хладоносителя на выходе:

- в режиме охлаждения: от +5 до +25 °C;
- в режиме нагрева: от +25 до +55 °C.

Особенности

- Эффективное охлаждение (EER до 3,13) и обогрев (СОР до 3,49), без учета потребляемой мощности гидромодуля.
- Встроенный гидромодуль с расширительной емкостью
- Удобны при монтаже и компактны.

Технические характеристики —

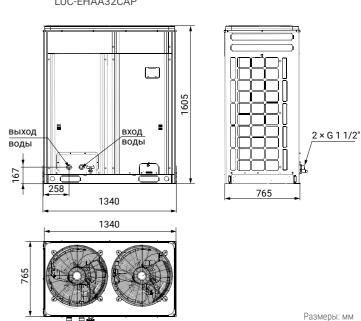
Чиллер LUC-		EHAA20CAP	EHAA25CAP	EHAA28CAP	EHAA32CAP
Холодопроизводительность	кВт	20	25	28	32
Потребляемая мощность в режиме охлаждения*	кВт	6,4	8,6	9,0	10,4
Хладагент			R4	10A	
Расход хладоносителя в испарителе	м³/ч	3,4	4,3	4,8	5,5
Максимальное рабочее давление хладоносителя	МПа	1	1	1	1
Диаметр патрубков хладоносителя испарителя (вход/выход)	дюйм	G 1 1/2"	G 1 1/2"	G 1 1/2"	G 1 1/2"
Теплопроизводительность	кВт	25	30	33	37
Потребляемая мощность в режиме нагрева*	кВт	7,8	8,7	10,2	10,6
Тип компрессора			ротационный с	DC-инвертором	
Количество компрессоров	ШТ.	1	1	1	1
Количество фреоновых контуров	ШТ.	1	1	1	1
Тип вентилятора			осевой с D	ОС-мотором	
Количество вентиляторов	ШТ.	1	1	2	2
Потребляемая мощность вентиляторов	кВт	0,75	0,75	0,75×2	0,75×2
Расход воздуха	м³/ч	11 000	11 000	14 600	14 600
Заправка хладагента	КГ	7	9	8,2	9,7
Электропитание	ф/В/Гц		3/38	30/50	
Исполнение со встроенным гидромодулем					
Потребляемая мощность насоса	кВт	0,63	0,70	0,70	0,72
Напор насоса	м вод. ст.	36	33	30	25
Габаритные размеры и масса					
Длина	MM	765	765	765	765
Ширина	MM	930	930	1340	1340
Высота	MM	1605	1605	1605	1605
Масса (нетто)	КГ	268	302	378	387

^{*} без учета потребляемой мощности гидромодуля.

Примечания

Параметры в таблице указаны при следующих условиях:

- Коэффициент загрязнения испарителя 0,086 м² °С/кВт
 Хладоноситель: вода.
- Значения холодопроизводительности даны при параметрах:
- температура воды на входе/выходе водяного теплообменника 12/7 °C;
- температура наружного воздуха 35 °C (DB)/24 °C (WB).


- Теплоноситель: вода.
- Значения теплопроизводительности даны при параметрах:
 температура воды на входе/выходе водяного теплообменника 40/45 °C;
- температура наружного воздуха 7 °C (DB)/6 °C (WB).

Габаритные размеры

LUC-EHAA20CAP LUC-EHAA25CAP

Выход Воды Воды Воды 192 930 765

LUC-EHAA28CAP LUC-EHAA32CAP

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Чиллеры LUC-E(I)HA(D)A...CAP

моноблочные с воздушным конденсатором с компрессорами переменной производительности со встроенным гидромодулем

в комплекте

✓ Чиллеры поставляются заправленными хладагентом R410A и маслом на заводе

Моноблочные чиллеры со встроенным гидромодулем оснащены DC-инверторными компрессорами и DC-моторами вентиляторов. Такое решение обеспечивает плавное регулирование холодо- или теплопроизводительности чиллера, а также позволяет достичь значительных показателей в энергосбережении и снижении уровня шума. Наличие встроенного гидромодуля существенно упрощает монтаж, так как насос и основные элементы контура хладоносителя смонтированы внутри корпуса.

Корпус

Корпус укомплектован сервисными панелями, обеспечивающими удобный доступ при проведении технического обслуживания. Основание и сервисные панели сделаны из оцинкованной и окрашенной стали

Компрессор

В зависимости от модели применяются герметичные ротационные или спиральные инверторные компрессоры торговых марок Mitsubishi Electric либо Hitachi.

Фреоновый контур

Включает в себя 4-ходовой клапан, фильтр-осушитель, электронный расширительный вентиль, датчики защиты по высокому и низкому давлению, датчик защиты от разморозки, отделитель жидкости.

Водяной теплообменник

Паяный пластинчатый теплообменник с теплоизоляционным материалом.

Конденсатор

Изготовлен из медных трубок с алюминиевым оребрением. Медные трубки с внутренним оребрением, увеличивающим эффективность теплопередачи.

Вентиляторы

. Малошумные осевые вентиляторы с DC-моторами, пластиковыми крыльчатками и защитной решеткой.

Блок электронных компонентов

Блок управления укомплектован контакторами, защитой электрических компонентов.

Гидравлический модуль

Гидравлический модуль состоит из циркуляционного насоса, предохранительного клапана, воздухоотводчика, вентиля слива воды, реле протока, расширительного бака (кроме модели LUC-IHDA82CAP).

Управление

Для управления чиллерами используется проводной пульт управления (входит в комплект) LZ-MPPW2 для моделей LUC-EHAA27CAP и LUC-EHDA55CAP, и LZ-MPPW5-2 для модели LUC-IHDA82CAP. Пульт управления предоставляет возможность выбора режима работы чиллера, просмотра и изменения основных параметров работы, отображает аварийные коды.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

- в режиме охлаждения: от -10 до +43 °C;
- в режиме нагрева: от -15 до +30 °C;
- в режиме нагрева: от -20 до +30 °C для модели LUC-IHDA82CAP. Рабочий диапазон температуры хладоносителя на выходе из теплообменника:
- в режиме охлаждения: от +5 до +20 °C;
- в режиме нагрева: от +25 до +55 °C.

Особенности

- DC-инверторный компрессор.
- Эффективное охлаждение (SEER до 4,25).
- Осевые вентиляторы с DC-моторами и с защитной решеткой.
- Встроенный гидромодуль с реле протока.

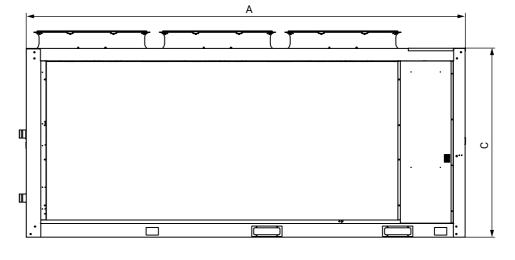
Опции

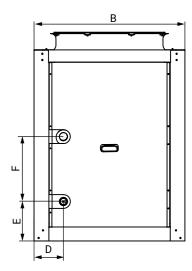
Пульт управления LZ-MPPG2 настенный проводной (поддерживает совместимость с системами BMS по протоколу Modbus).
 Применяется для моделей LUC-EHAA27CAP и LUC-EHDA55CAP.

Технические характеристики —

Чиллер LUC-		EHAA27CAP	EHDA55CAP	IHDA82CAP
Холодопроизводительность	кВт	27,6	55,0	82,0
Потребляемая мощность компрессоров	кВт	10,00	20,20	33,74
Хладагент			R410A	
Расход хладоносителя в испарителе	М3/Ч	5,0	9,8	15,0
Гидравлическое сопротивление испарителя	кПа	55	61	75
Максимальное рабочее давление хладоносителя	МПа		1	
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN40	DN50	DN50
Уровень звукового давления	дБ(А)	68	73	81
Теплопроизводительность	кВт	31	61	90
Потребляемая мощность компрессоров в режиме нагрева	кВт	9,8	18,5	29,7
Тип компрессора		ротационный с инв	ерторным управлением	спиральный с инверторным управлением
Количество компрессоров	ШТ.	1	2	2
Количество фреоновых контуров	ШТ.	1	1	1
Регулирование холодопроизводительности		плавное	плавное	плавное
Тип вентилятора			осевой с DC-мотором	
Количество вентиляторов	ШТ.	1	2	3
Потребляемая мощность вентиляторов	кВт	0,75	0,75×2	0,92×3
Расход воздуха	м³/ч	12 500	24000	38 000
Заправка хладагента	КГ	10,5	17,0	27,0
Внутренний объем испарителя (сторона хладоносителя)	Л	2,44	5,17	7,05
Количество плат управления в чиллере	ШТ.	1	1	1
Электропитание	ф/В/Гц		3/380/50	
Исполнение со встроенным гидромодулем				
Потребляемая мощность насоса	кВт	0,65	1,5	1,5
Свободный напор насоса	м вод.ст.	17,2	20,9	19,5
Объем расширительного бака	Л	4,2	12,0	/
Габаритные размеры и масса				
Длина	MM	1870	2220	3220
Ширина	MM	1000	1055	1095
Высота	MM	1175	1325	1513
Масса (сухая)	КГ	315	515	748

Примечания


Параметры в таблице указаны при следующих условиях: ■ Коэффициент загрязнения испарителя 0,018 м² • °С/кВт.


- Хладоноситель: вода.
- Значения холодопроизводительности даны при параметрах:
- температура воды на входе/выходе водяного теплообменника 12/7 °C;
 температура наружного воздуха 35 °C (DB)/24 °C (WB).
- Теплоноситель: вода.
- Значения теплопроизводительности даны при параметрах:
- температура воды на входе/выходе водяного теплообменника 40/45 °C;
 температура наружного воздуха 7 °C (DB)/6 °C (WB).
- Данные уровня звукового давления получены замером на расстоянии 1 метра.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	Выход воды	Вход воды
LUC-EHAA27CAP	1870	1000	1175	204	200	470	DN40	DN40
LUC-EHDA55CAP	2220	1055	1325	234	210	470	DN50	DN50
LUC-IHDA82CAP	3220	1513	1095	210	286	470	DN50	DN50

LUC-IHDA82CAP

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Чиллеры

модульные с воздушным конденсатором со спиральными компрессорами

Гибкость монтажа и подбора обеспечивается за счет того, что любой модуль такой модульной системы может выступать в качестве главного. Работа нескольких агрегатов в группе осуществляется в режиме ведущий/ведомый — один чиллер является ведущим, остальные чиллеры являются ведомыми.

Преимущества модульной системы перед моноблочными чиллерами

- При моноблочном исполнении в случае выхода чиллера из строя система останавливается на время ремонта. В модульной системе при выходе из строя одного из чиллеров данный модуль изымается из системы холодоснабжения для ремонта или замены, а вся остальная система продолжает работать.
- При размещении системы холодоснабжения на

крыше здания несколько модулей можно разместить равномерно по всей площади в соответствии с требованиями о допустимой нагрузке. Таким образом, общая масса системы будет равномерно

распределена по всей площади кровли.

Принцип построения модульной системы холодоснабжения

Благодаря модульной конструкции модули на 35, 65, 80, 130, 185 и 250 кВт можно комбинировать путем соединения соответствующих входов и выходов, получая требуемую холодопроизводительность. Минимальная холодопроизводительность — 35 кВт, максимальная — 2080 кВт.

Комбинация модулей (ступенчатый набор мощности)

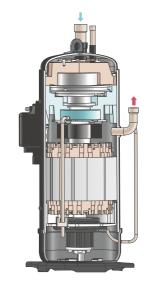
Пример достижения холодопроизводительности на 370 кВт:

Вариант 1 185 кВт **= 370** квт 185 кВт Вариант 2 130 кВт = 360 KBT В модульных чиллерах LUC-FHA(D)(M)A...CAW установлены регуляторы скорости вращения вентиляторов воздушного конденсатора, что позволило расширить диапазон рабочей температуры наружного воздуха до -10 °C в режиме охлаждения. Холодопроизводительность чиллеров от 35 до 250 кВт.

- Рабочий диапазон температуры наружного воздуха: от -10 до +46 °C в режиме охлаждения; от -10 до +21 °C в режиме обогрева.
- Рабочий диапазон температуры охлажденного хладоносителя от 0 до +17 °C в режиме охлаждения (при температуре ниже +5 °C необходимо использовать водогликолевые смеси).
- Рабочий диапазон температуры нагреваемого теплоносителя: от +22 до +50 °C в режиме обогрева.

Компрессор

В модульных чиллерах LESSAR постоянной производительности для надежной и стабильной работы оборудования установлены герметичные спиральные компрессоры постоянной производительности таких известных производителей, как Emerson (Copeland™) и Danfoss.


В чиллерах LESSAR модульной конструкции с переменной производительностью в зависимости от модели установлены либо DC-инверторные герметичные ротационные компрессоры Mitsubishi Electric, либо DC-инверторные герметичные спиральные компрессоры Hitachi.

Модульные чиллеры переменной производительности способны обеспечить оптимальный комфорт и снизить энергопотребление за счет плавного регулирования производительности компрессора. Они все чаще находят свое применение в системах кондиционирования воздуха коттеджей, больниц и отелей.

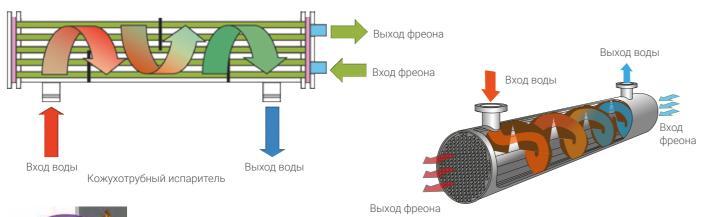
Переменная, плавнорегулируемая производительность в модульных чиллерах LESSAR достигается за счет использования DC-инверторных компрессоров с электродвигателями постоянного тока.

Применение DC-инверторных компрессоров в модульных чиллерах LESSAR обеспечивает высокую энергоэффективность, сниженный уровень шума, более точное поддержание температуры хладоносителя по сравнению с чиллерами с компрессорами без инверторов.

Гостиница «Holiday Inn» Санкт-Петербург

ипермаркеты «Максилом» Санкт-Петербург, Нижний Новгород

Чиллеры


модульные с воздушным конденсатором со спиральными компрессорами

Водяной теплообменник -

Водяной теплообменник, в котором происходит охлаждение воды за счет отвода теплоты к кипящему хладагенту, называется испарителем. В зависимости от серии и модели модульные чиллеры оснащаются кожухотрубным, пластинчатым либо испарителем типа «труба в трубе». Кожух кожухотрубного испарителя изготовлен из углеродистой стали, трубы — из меди с внутренним рифлением, перегородки — из полипропилена. Концы труб развальцованы в стальных трубных досках. Существенным преимуществом кожухотрубного испарителя является меньшая подверженность размораживанию по сравнению с пластинчатыми испарителями.

Специально разработанный кожухотрубный испаритель —

Модульные чиллеры LESSAR, оснащенные высокоэффективными кожухотрубными испарителями, нашли широкое применение в России. Кожухотрубные испарители имеют значительные преимущества при эксплуатации по сравнению с неразборными пластинчатыми испарителями. В новых моделях модульных чиллеров устанавливаются кожухотрубные испарители с усовершенствованной конструкцией перегородок спиралевидной формы, которые сокращают застойные зоны по ходу движения хладоносителя, тем самым повышая интенсивность теплообмена между рабочими средами внутри испарителя.

Испаритель типа «труба в трубе»

Испаритель типа «труба в трубе» состоит из двух коаксиально расположенных медных трубок. В режиме охлаждения хладоноситель течет в образованном двумя трубками концентрическом зазоре, отдавая теплоту кипящему хладагенту во внутренней медной трубе. Преимуществом данного типа испарителя является меньшая масса и стоимость по сравнению с кожухотрубными испарителями.

Пластинчатый испаритель состоит из тонких штампованных металлических пластин. Пластины, собранные в единый пакет, образуют между собой каналы, по одним из которых протекает хладоноситель, а по другим хладагент. Каналы с хладоносителем и фреоном чередуются между собой, тем самым обеспечивается обмен тепловой энергией. Главным преимуществом пластинчатых испарителей является эффективность теплопередачи при сравнительно малых размерах. То есть, за счет высокого коэффициента теплопередачи пластинчатые испарители имеют гораздо меньшие габариты, чем кожухотрубные испарители и испарители типа «труба в трубе» при одинаковой производительности.

Кожухотрубный испаритель новой конструкции

Компрессор -

В модульных чиллерах LESSAR постоянной производительности применяются спиральные герметичные компрессоры TM Danfoss.

Все компрессоры установлены на резиновых виброопорах.

Спиральные компрессоры TM Danfoss длительное время успешно применяются в системах кондиционирования воздуха. Основными преимуществами таких компрессоров являются надежность, энергоэффективность, низкий уровень шума и вибрации, а также большой ресурс работы.

Конденсатор -

Воздушный конденсатор состоит из расположенных в шахматном порядке бесшовных медных труб с увеличенной теплопередающей поверхностью за счет оребрения наружной поверхности трубок алюминиевыми ламелями. Для увеличения интенсивности теплоотдачи внутренняя поверхность медных трубок выполнена с рифлением. V- или П-образная конструкция теплообменной поверхности конденсатора обеспечивает компактность конденсатора. Конденсатор оснащен малошумными низкооборотными осевыми вентиляторами с пластиковыми крыльчатками.

Электронный расширительный вентиль EXV —

В модульных чиллерах LESSAR регулирование расхода хладагента происходит с помощью электронного 500-ступенчатого расширительного вентиля EXV. Электронный расширительный вентиль быстрее реагирует на изменение тепловой нагрузки, что способствует более точному поддержанию требуемого температурного режима охлаждения хладоносителя.

Принцип работы электронного расширительного вентиля (EXV

Электрический щит управления —

В зависимости от модели модульные чиллеры LESSAR комплектуются одним либо несколькими электрическими щитами управления. В щите управления расположены контакторы компрессоров, вентиляторов, электронная плата управления чиллером.

Система автоматического управления

Модульные чиллеры оснащены электронными платами управления, которые в соответствии с заложенным в них алгоритмом объединяются в единую систему управления, что позволяет управлять с одного пульта работой как отдельного модульного чиллера, так и группы модульных чиллеров в режиме ведущий/ведомый. Гибкость настройки модульной системы чиллеров состоит в том, что любой модульный чиллер может быть ведущим. Одно из главных преимуществ модульной системы по сравнению с моноблочным чиллером заключается в ее повышенной надежности, поскольку при выходе из строя одного из модулей остальные модули продолжают работать.

Новые модели модульных чиллеров LUC-FHA(D)A...CA-B совместимы с предыдущим поколением модульных чиллеров LUC-FHA(D)(M)A...CAW для работы в единой системе холодоснабжения в режиме ведущий/ведомый.

Проводные пульты управления –

Проводной пульт LZ-MIPW предназначен для управления работой модульных чиллеров LUC-FHA(D)(M)A...CAW, LUC-FHA(D)A...CA-B. Холодильные машины LUC-EHA(D)A...CAW и LUC-IHDA...CAW поставляются в комплекте с пультами LZ-MPPW2 и LZ-MPPW5-2 соответственно. С проводного пульта осуществляется выбор режима работы чиллера, основных параметров функционирования и просмотр кодов ошибок. В проводной пульт LZ-MIPW добавлена функция недельного таймера с возможностью настройки выбора дня недели, периодов работы чиллера, уставки температуры и режима работы. С одного проводного пульта управления возможно управлять несколькими модульными чиллерами (в зависимости от модели), объединенными в одну модульную систему холодоснабжения.

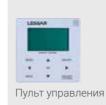
Пульт управления LZ-MIPW

При возникновении потребности интегрирования чиллеров в сети BMS, работающие по протоколу Modbus, взамен пультов LZ-MIPW, LZ-MPPW2 и LZ-MPPW5-2, необходимо соответственно использовать следующие пульты: LZ-MIPS, LZ-MPPG2 и LZ-MPPG5-2.

Защитные устройства

В чиллере предусмотрен высокий уровень автоматической защиты от высокого/низкого давления хладагента, отсутствия протока воды (при установке реле протока), перегрузки электродвигателя, обрыва фазы. Контролируется правильность чередования фаз. Кожухотрубный теплообменник оснащен защитой от размораживания. Реле протока поставляется со всеми моделями модульных чиллеров LUC-FHM(D)A...CAW, LUC-FHA(D)A...CA-В в стандартной комплектации.

98 \sim 9


Чиллеры LUC-E(I)HA(D)A...CAW

модульные с воздушным конденсатором с компрессорами переменной производительности

в комплекте

LZ-MPPW2 LZ-MPPM5-2 настенный проводной проводной (до 16 модулей) (до 16 модулей)

і) (до 16 модулей)

✓ Чиллеры поставляются заправленными хладагентом R410A и маслом на заводе

Модульные чиллеры оснащены DC-инверторными компрессорами и DC-моторами вентиляторов. Такое решение позволило достичь высоких результатов в энергосбережении, плавном регулировании производительности и работе чиллера при более низкой температуре наружного воздуха, до −10 °С в режиме охлаждения.

Возможность объединения в модульную систему позволяет быть более гибким в вопросе размещения и наращивания производительности. Ротация модулей одной системы обеспечивает более длительный срок службы. А автоматический переход от ведомого блока, в котором возникла неисправность или который в данное время находится на техническом обслуживании, к следующему рабочему ведомому блоку позволяет сохранять работоспособность системы и комфортные условия в кондиционируемых помещениях.

Корпус

Корпус укомплектован сервисными панелями, обеспечивающими удобный доступ при проведении технического обслуживания. Основание и сервисные панели сделаны из оцинкованной и окрашенной стали.

Компрессор

В зависимости от модели применяются герметичные ротационные и спиральные инверторные компрессоры торговых марок Mitsubishi Electric либо Hitachi.

Фреоновый контур

Включает в себя 4-ходовой клапан, фильтр-осушитель, электронный расширительный вентиль, датчики защиты по высокому и низкому давлению, датчик защиты от разморозки, отделитель жидкости.

Водяной теплообменник

Паяный пластинчатый теплообменник с теплоизоляционным материалом.

Конденсатор

Изготовлен из медных трубок с алюминиевым оребрением. Медные трубки с внутренним оребрением, увеличивающим эффективность теплопередачи.

Вентиляторы

Малошумные осевые вентиляторы с DC-двигателями, пластиковыми крыльчатками и защитной решеткой.

Блок электронных компонентов

Блок управления укомплектован контакторами, защитой электрических компонентов.

Управление

Для управления чиллерами используется проводной пульт управления LZ-MPPW2 (входит в комплект), который предоставляет возможность выбора режима работы чиллера, просмотра и изменения основных параметров работы, отображает аварийные коды. Возможность работы до 16 чиллеров в режиме ведущий/ведомый в зависимости от моделей подключаемых чиллеров.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

- в режиме охлаждения: от -10 до +43 °C;
- в режиме нагрева: от -15 до +30 °C;
- в режиме нагрева: от −20 до +30 °С для модели LUC-IHDA82CAW. Рабочий диапазон температуры хладоносителя на выходе из теппообменника:
- в режиме охлаждения: от 5 до +20 °C;
- в режиме нагрева: от +25 до +55 °C.

Особенности

- DC-инверторный компрессор.
- Эффективное охлаждение (SEER до 4,41).
- Осевые вентиляторы с DC-моторами и с защитной решеткой.
- Возможность комбинирования до 16 модулей в режиме ведуший/веломый.
- Ротация между ведомыми модулями
- Пуск/останов по таймеру.
- Режим работы чиллера со снижением звуковых характеристик.
- Удаленный пуск/останов.
- Реле протока в комплекте, уже установлено и подключено.

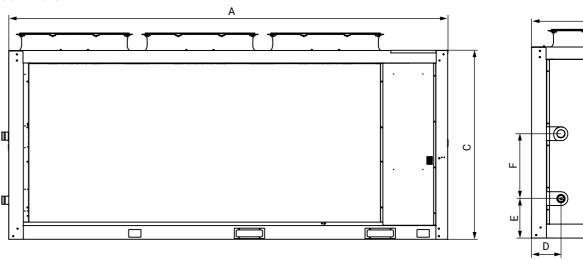
Опци

Пульт управления LZ-MPPG2 настенный проводной (поддерживает совместимость с системами BMS по протоколу Modbus).
 Применяется для моделей LUC-EHAA27CAP и LUC-EHDA55CAP.

Технические характеристики –

Чиллер LUC-		EHAA27CAW	EHDA55CAW	IHDA82CAW
Холодопроизводительность	кВт	27,6	55,0	82,0
Потребляемая мощность компрессоров	кВт	10,25	20,3	34,0
Хладагент			R410A	
Расход хладоносителя в испарителе	М3/Ч	5,0	9,8	15,0
Гидравлическое сопротивление испарителя	кПа	55	61	75
Максимальное рабочее давление хладоносителя	МПа		1	
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN40	DN50	DN50
Уровень звукового давления	дБ(А)	65,8	72,1	80,1
Теплопроизводительность	кВт	31,4	61,6	90,0
Потребляемая мощность компрессоров в режиме нагрева	кВт	9,9	18,6	30,0
Тип компрессора		ротационный с инве	спиральный с инверторным управлением	
Количество компрессоров	шт.	1	2	2
Количество фреоновых контуров	шт.	1	1	1
Регулирование холодопроизводительности		плавное	плавное	плавное
Тип вентилятора			осевой с DC-мотором	
Количество вентиляторов	шт.	1	2	3
Потребляемая мощность вентиляторов	кВт	0,75	0,75×2	0,92×3
Расход воздуха	М3/Ч	12 500	24000	38 000
Заправка хладагента	КГ	10,5	17,0	27,0
Внутренний объем испарителя (сторона хладоносителя)	Л	2,44	5,17	7,05
Количество плат управления в чиллере	шт.	1	1	1
Электропитание	ф/В/Гц		3/380/50	
Максимальный рабочий ток	A	18	36,8	60
Габаритные размеры и масса				
Длина	MM	1870	2220	3220
Ширина	MM	1000	1055	1095
Высота	MM	1175	1325	1513
Масса (сухая)	КГ	300	480	710

Примечания


Параметры в таблице указаны при следующих условиях:

- Коэффициент загрязнения испарителя 0,018 м² °С/кВт.
- Хладоноситель: вода.
- Значения холодопроизводительности даны при параметрах:
- температура воды на входе/выходе водяного теплообменника 12/7 °C;
- температура наружного воздуха 35 °C (DB)/24 °C (WB).
- Теплоноситель: вода.
- Значения теплопроизводительности даны при параметрах:
 температура воды на входе/выходе водяного теплообменника 40/45 °C;
- температура воды на входе/выходе водиного теплос
 температура наружного воздуха 7 °C (DB)/6 °C (WB).
- Данные уровня звукового давления получены замером на расстоянии 1 метра.

Габаритные размеры

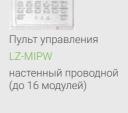
Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	Выход воды	Вход воды
LUC-EHAA27CAW	1870	1000	1175	204	200	470	DN40	DN40
LUC-EHDA55CAW	2220	1055	1325	234	210	470	DN50	DN50
LUC-IHDA82CAW	3220	1513	1095	210	286	470	DN50	DN50

LUC-IHDA82CAW

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Чиллеры LUC-FHA(D)(M)A...CAW(-B)

модульные с воздушным конденсатором с компрессорами постоянной производительности



В КОМПЛЕКТЕ

Пульт управления LZ-MIPS

настенный проводной (совместим с системами BMS по протоколу Modbus RTU до 16 модулей)

Благодаря возможности объединения модульных чиллеров в систему до 16 модулей и работе в режиме ведущий/ведомый, диапазон холодопроизводительности модульной системы может составлять от 35 дс 2000 кВт. При этом каждый чиллер может быть как ведущим, так и ведомым.

Для надежной и стабильной работы в модульных чиллерах LESSAR постоянной производительности установлены спиральные компрессоры Danfoss.

В чиллерах установлены регуляторы скорости вращения вентиляторов воздушного конденсатора, что позволило расширить диапазон рабочей температуры наружного воздуха до −10 °C в режиме охлаждения.

Корпус

Корпус укомплектован сервисными панелями, обеспечивающими удобный доступ при проведении технического обслуживания. Основание и сервисные панели сделаны из оцинкованной и окрашенной стали.

Компрессор

Герметичный спиральный компрессор постоянной производительности торговой марки Danfoss.

Фреоновый контур

Включает в себя 4-ходовой клапан, фильтр-осушитель, электронный расширительный вентиль, датчики защиты по высокому и низкому давлению, датчик защиты от разморозки, отделитель жидкости.

Водяной теплообменник

Испаритель кожухотрубного типа либо типа «труба в трубе» (в зависимости от модели чиллера).

Конденсатор

V-образная или П-образная конструкция теплообменной поверхности конденсатора (в зависимости от модели чиллера).

Вентиляторы

Малошумные низкооборотные осевые вентиляторы с пластиковыми крыльчатками и защитной решеткой.

Блок электронных компонентов

Блок управления укомплектован контакторами, защитой электрических компонентов.

Управление

Для управления чиллерами используется проводной пульт управления LZ-MIPW (входит в комплект), с которого возможно осуществление выбора режима работы чиллера, изменение основных параметров работы, отображение аварийных кодов и установка недельного таймера. Максимальная длина провода 500 м. Возможность работы до 16 чиллеров в режиме ведущий/ведомый в зависимости от моделей подключаемых чиллеров, а также совместная работа с моделями прошлого поколения. Возможность дистанционного пуска/останова.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

- в режиме охлаждения: от -10 до +52 °C (LUC-FHAA35CAW-B);
- в режиме охлаждения: от -10 до +46 °C (LUC-FHDA80CAW, LUC-FHMA185CAW, LUC-FHMA250CAW);
- в режиме нагрева: от −15 до +24 °C (LUC-FHAA35CAW-B, LUC-FHDA80CAW);
- в режиме нагрева: от −10 до +21 °C (LUC-FHMA185CAW, LUC-FHMA250CAW).

Рабочий диапазон температуры хладоносителя на выходе из теплообменника:

- в режиме охлаждения: от +5 до +17 °C (по умолчанию), от 0 до +17 °C (расширенный для LUC-FHAA35CAW-B, LUC-FHDA80CAW, при температуре ниже +5 °C необходимо использовать водогликолевые растворы)
- в режиме охлаждения: от 0 до +17 °C (при температуре ниже +5 °C необходимо использовать водогликолевые растворы) (LUC-FHMA185CAW, LUC-FHMA250CAW);
- в режиме нагрева: от +25 до +50 °C (для LUC-FHAA35CAW-B, LUC-FHDA80CAW)
- в режиме нагрева: от +22 до +50 °C (LUC-FHMA185CAW, LUC-FHMA250CAW).

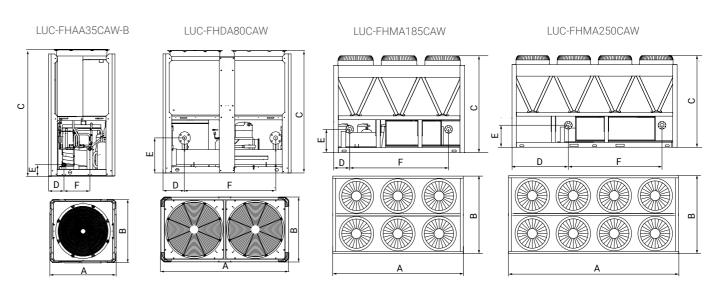
Особенности

- Высокоэффективный спиральный компрессор.
- Эффективное охлаждение (EER до 3,33) и обогрев (COP до 3,48).
- Вентиль электронный расширительный
- Осевые вентиляторы с защитной решеткой.
- Возможность комбинирования до 16 модулей в режиме ведущий/ведомый в зависимости от моделей. Общее количество плат управления в модульной системе не должно превышать 16 (количество плат управления в чиллере различается в зависимости от модели см. таблицу технических характеристик).
- Пуск/останов по таймеру.
- Возможность установки недельного таймера.
- Удаленный пуск/останов.
- Удобны при монтаже и компактны.
- Удаленный сигнал «Авария»

Технические характеристики –

Чиллер LUC-		FHAA35CAW-B	FHDA80CAW	FHMA185CAW	FHMA250CAW			
Холодопроизводительность	кВт	35	80	185	250			
Потребляемая мощность компрессоров	кВт	10,7	24,2	57,8	71,9			
Хладагент		R410A						
Расход хладоносителя в испарителе	м³/ч	6	13,8	31,8	43,0			
Гидравлическое сопротивление испарителя	кПа	75	30	30	40			
Максимальное рабочее давление хладоносителя	МПа		1	,0				
Диаметр патрубков хладоносителя испарителя (вход/выход)	ММ	R 1 1/4" (резьба)	DN65 (фланец)	DN 80 (фланец)	DN 100 (фланец)			
Уровень звукового давления	дБ(А)	65	67	74	74			
Теплопроизводительность	кВт	37	85	200	270			
Потребляемая мощность в режиме нагрева	кВт	10,5	24,9	55,8	73,6			
Тип компрессора			спира	ЛЬНЫЙ				
Количество компрессоров	ШТ.	1	2	6	8			
Количество фреоновых контуров	ШТ.	1	2	6	4			
Количество ступеней регулирования холодопроизводительности	шт.	1	2	6	4			
Тип вентилятора		осевой						
Количество вентиляторов	ШТ.	1	2	6	8			
Потребляемая мощность вентиляторов	кВт	0,8	0,8×2	0,86×6	0,7×8			
Расход воздуха	м³/ч	13 500	27 000	72 000	96 000			
Заправка хладагента	КГ	6,0	6,5×2	7,0×6	15,0×4			
Внутренний объем испарителя (сторона хладоносителя)	Л	10	47,5	90	131			
Количество плат управления в чиллере	ШТ.	1	1	3	2			
Электропитание	ф/В/Гц		3/38	30/50				
Максимальный рабочий ток	А	27	65	150	200			
Пусковой ток	А	177	197	312	344			
Габаритные размеры и масса								
Длина	MM	1020	2000	2850	3800			
 Ширина	MM	980	960	2000	2000			
Высота	MM	1770	1770	2110	2130			
Масса (сухая)	КГ	300	645	1730	2450			

Примечание


Параметры в таблице указаны при следующих условиях:

Коэффициент загрязнения испарителя 0.086 м² • °С/кВт

- Хоэффициент загрязнег
 Хлалоноситель: вола
- Значения хололопроизволительности ланы при параметрах:
- температура воды на входе/выходе водяного теплообменника 12/7 °C; — температура наружного воздуха 35 °C (DB)/24 °C (WB).
- Теплоноситель: вода.
- Значения теплопроизводительности даны при параметрах:
- температура воды на входе/выходе водяного теплообменника 40/45 °C; — температура наружного воздуха 7 °C (DB)/6 °C (WB).
- Данные уровня звукового давления получены замером на расстоянии 1 метра.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F, мм	Выход воды	Вход воды
LUC-FHAA35CAW-B	1020	980	1770	237	152	400	R 1 1/4" (резьба)	R 1 1/4" (резьба)
LUC-FHDA80CAW	2000	960	1770	336	506	1420	DN65 (фланец)	DN65 (фланец)
LUC-FHMA185CAW	2850	2000	2110	347	506	2156	DN80 (фланец)	DN80 (фланец)
LUC-FHMA250CAW	3800	2000	2130	1235	573	2156	DN100 (фланец)	DN100 (фланец)

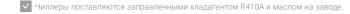
Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Чиллеры LUC-FHA(D)A...CA-B

модульные с воздушным конденсатором с компрессорами постоянной производительности

В КОМПЛЕКТЕ

Пульт управления LZ-MIPW



опция

Пульт управления LZ-MIPS

настенный проводной (совместим с системами BMS по протоколу Modbus RTU до 16 модулей)

Новый модельный ряд модульных чиллеров со спиральными компрессорами постоянной производительности обладает более компактными размерами и массой, чем модели прежних поколений.

Таких изменений удалось достичь за счет применения П-образного конденсатора и компактного размещения внутренних элементов.

Корпус

Корпус укомплектован сервисными панелями, обеспечивающими удобный доступ при проведении технического обслуживания. Основание и сервисные панели сделаны из оцинкованной стали и окрашены порошковой краской для антикоррозионной защиты.

Компрессор

Герметичный спиральный компрессор постоянной производительности торговой марки Danfoss.

Фреоновый контур

Включает в себя 4-ходовой клапан, фильтр-осушитель, электронный расширительный вентиль, капиллярную трубку, датчики защиты по высокому и низкому давлению, датчик защиты от разморозки, отделитель жидкости.

Водяной теплообменник

Испаритель кожухотрубного типа.

Конденсатор

П-образная конструкция теплообменной поверхности конденсатора обеспечивает компактность конденсатора.

Вентиляторь

Малошумные низкооборотные осевые вентиляторы с пластиковыми крыльчатками и защитной решеткой.

Блок электронных компонентов

Блок управления укомплектован контакторами, электронной платой управления.

Управление

Для управления чиллерами используется проводной пульт управления LZ-MIPW (входит в комплект), с которого возможно осуществление выбора режима работы чиллера, изменение основных параметров работы, отображение аварийных кодов и установка недельного таймера. Максимальная длина провода 500 м. Возможность работы до 16 чиллеров в режиме ведущий/ ведомый в зависимости от моделей подключаемых чиллеров, а также совместная работа с моделями прошлого поколения. Возможность дистанционного пуска/останова.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

- в режиме охлаждения: от +15 до +48 °C;
- в режиме нагрева: от −15 до +24 °C.

Рабочий диапазон температуры хладоносителя на выходе из теплообменника:

- в режиме охлаждения: от +5 до +17 °C;
- в режиме нагрева: от +40 до +50 °C.

Особенности

- Высокоэффективный спиральный компрессор.
- Эффективное охлаждение (EER 3,33) и обогрев (COP 3,48).
- Вентиль электронный расширительный.
- Осевые вентиляторы с защитной решеткой.
- Возможность комбинирования до 16 модулей в режиме ведущий/ведомый в зависимости от моделей. Общее количество плат управления в модульной системе не должно превышать 16.
- Ротация между ведомыми чиллерами одной системы.
- Данная серия модульных чиллеров совместима и может работать в одной модульной системе с чиллерами прошлого поколения LUC-FHA(D)(M)A...CAW.
- Удаленный пуск/останов.
- Удаленный сигнал «Авария»

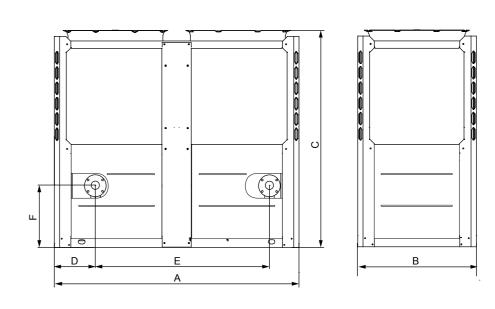
Технические характеристики –

Чиллер LUC-		FHAA65CA-B	FHDA130CA-B
Холодопроизводительность	кВт	65	130
Потребляемая мощность компрессоров в режиме охлаждения	кВт	18,52	37,36
Хладагент		R4	10A
Расход хладоносителя в испарителе	м³/ч	11,2	22,4
Гидравлическое сопротивление испарителя	кПа	48	60
Максимальное рабочее давление хладоносителя	МПа		1
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN65 (фланец)	DN65 (фланец)
Уровень звукового давления	дБ(А)	69	71
Теплопроизводительность	кВт	71	142
Потребляемая мощность компрессоров в режиме нагрева	кВт	19,4	39
Тип компрессора		спиральный	спиральный
Количество компрессоров	ШТ.	1	2
Количество фреоновых контуров	ШТ.	1	2
Количество ступеней регулирования холодопроизводительности		1	2
Тип вентилятора		oce	ВВОЙ
Количество вентиляторов	ШТ.	2	2
Потребляемая мощность вентиляторов	кВт	0,5×2	0,9×2
Расход воздуха	м³/ч	26 500	39 000
Заправка хладагента	КГ	11,5	10×2
Внутренний объем испарителя (сторона хладоносителя)	Л	35	60
Количество плат управления в чиллере	ШТ.	1	1
Электропитание	ф/В/Гц	3/38	80/50
Максимальный рабочий ток	A	55	110
Пусковой ток	А	260	308
Габаритные размеры и масса			
Длина	MM	2000	2200
Ширина	MM	960	1120
Высота	MM	1770	2300
Масса (сухая)	КГ	525	825

Примечания

Параметры в таблице указаны при следующих условиях:

- Коэффициент загрязнения испарителя 0,086 м² °С/кВт.
- Хладоноситель: вода.
- Значения холодопроизводительности даны при параметрах:
 температура воды на входе/выходе водяного теплообменника 12/7 °C;
- температура наружного воздуха 35 °C (DB)/24 °C (WB).


LUC-FHAA65CA-B

LUC-FHDA130CA-B

- Теплоноситель: вода.
- Значения теплопроизводительности даны при параметрах:
 температура воды на входе/выходе водяного теплообменника 40/45 °C;
- температура наружного воздуха 7 °C (DB)/6 °C (WB).
 Данные уровня звукового давления получены замером на расстоянии 1 метра.

Габаритные размеры

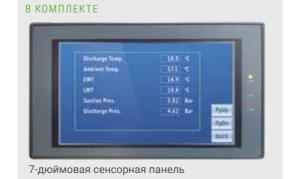
Модель		А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	Выход воды	Вход воды
LUC-FHAA65CA	-В	2000	960	1770	239	1420	502	DN65	DN65
LUC-FHDA130C	A-B	2200	1120	2300	390	1420	350	DN65	DN65

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Чиллеры LUC-FHMA...CA(C)(P)-В

модульные с воздушным конденсатором со спиральными компрессорами

постоянной производительности



✓ Чиллеры поставляются заправленными хладагентом R410A и маслом на заводе

Модельный ряд модульных чиллеров позволяет объединять между собой до **8 чиллеров** в систему с максимальной суммарной холодопроизводительностью **3680 кВт**. Конструкция чиллеров при торцевом размещении друг к другу позволяет устанавливать модули вплотную, позволяя тем самым уменьшить площадь для размещения модульной системы.

При индивидуальном использовании чиллеры LUC-FHMA340CA(C)(P)-В и LUC-FHMA460CA(C)(P)-В могут быть опционально доукомплектованы встроенным гидравлическим насосным модулем. При наличии встроенного гидромодуля возможность объединения в модульную систему отсутствует.

Корпус

Корпус укомплектован сервисными панелями, обеспечивающими удобный доступ при проведении технического обслуживания. Основание и сервисные панели сделаны из оцинкованной и окрашенной стали.

Компрессо

Герметичный спиральный компрессор постоянной производительности торговой марки Danfoss.

Фреоновый контур

Включает в себя 4-ходовой клапан (исполнение с тепловым насосом), фильтр-осушитель, электронный расширительный вентиль, датчики защиты по высокому и низкому давлению, датчик защиты от разморозки (исполнение с тепловым насосом), отделитель жидкости.

Водяной теплообменник

Теплообменник кожухотрубного типа. Соединения типа Victaulic на входе/выходе хладоносителя из теплообменника.

Конденсатор

V-образная конструкция теплообменной поверхности конденсатора обеспечивает компактность конденсатора.

Вентиляторы

Малошумные низкооборотные осевые вентиляторы с защитной решеткой.

Блок электронных компонентов

Блок управления укомплектован контакторами, защитой всех компонентов.

Управление

Модульные чиллеры оснащены электронными платами управления. Выбор режима работы чиллера, изменение основных параметров работы, отображение аварийных кодов осуществляется с помощью 7-дюймовой сенсорной панели. Возможность работы до 8 чиллеров в режиме ведущий/ведомый.

Гидромодуль (опция)

Встроенный гидравлический насосный модуль имеет все необходимые для стабильной работы компоненты:

- циркуляционный насос;
- сетчатый фильтр:
- расширительный бак;
- реле протока;
- предохранительный клапан;
- воздухоотводчик;
- манометры на всасывании и нагнетании;
- балансировочный клапан

Соединения типа Victaulic на входе/выходе.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

■ в режиме охлаждения: от 0 до +48 °C.

Рабочий диапазон температуры хладоносителя на выходе из теплообменника:

■ в режиме охлаждения: от +5 до +20 °C.

Диапазон работы в режиме теплового насоса (опция)

Рабочий диапазон температуры наружного воздуха:

■ в режиме нагрева: от −15 до +48 °C.

Рабочий диапазон температуры теплоносителя на выходе из теплообменника:

■ в режиме нагрева: от +20 до +50 °C.

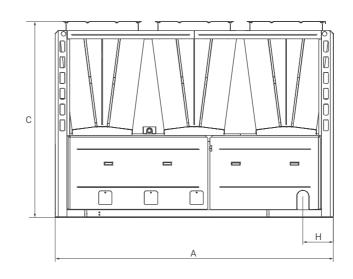
Особенности

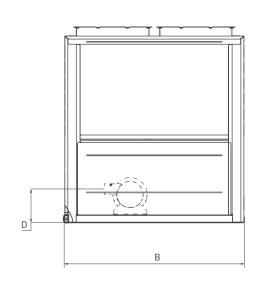
- Высокоэффективный спиральный компрессор.
- Эффективное охлаждение (EER 3,3) и обогрев (COP 3,5).
- Вентиль электронный расширительный.
- Осевые вентиляторы с защитной решеткой.
- Возможность комбинирования до 8 модулей в режиме ведущий/ведомый.
- Удаленный пуск/останов.
- Удаленное изменение режима работы COOL/HEAT.
- Контакты для выноса аварийной сигнализации.
- Удобны при монтаже и компактны.

Технические характеристики

Чиллер LUC-			FHMA340CA(C)(P)-B	FHMA460CA(C)(P)-B
Холодопроизводительность		кВт	340	460
Потребляемая мощность компр	ессоров	кВт	94,7	127,6
Хладагент			R4	10A
Расход хладоносителя в испари	теле	м³/ч	58,5	79,1
идравлическое сопротивление испарителя		кПа	63	63
Максимальное рабочее давление хладоносителя		МПа		1
lиаметр патрубков хладоносителя испарителя (вход/выход)		MM	DN125	DN125
Тип соединения			Victaulic	Victaulic
Тип компрессора			спира	льный
	Контур А	ШТ.	2	2
Количество компрессоров	Контур В	ШТ.	1	2
Тип вентилятора			oce	вой
Количество вентиляторов		ШТ.	6	8
Потребляемая мощность вентиляторов		кВт	1,3×6	1,3×8
Расход воздуха		м³/ч	20 000×6	20 000×8
Заправка хладагента		КГ	38+12	38+38
Количество плат управления в	ниллере	ШТ.	1	1
Электропитание		ф/В/Гц	3/38	0/50
Максимальный рабочий ток		A	258	344
Пусковой ток		A	589	673
Исполнение с тепловым на	СОСОМ			
Теплопроизводительность		кВт	355	475
Потребляемая мощность в реж	име нагрева	кВт	102	137,5
Исполнение со встроенны	и гидромодулем			
Потребляемая мощность насос	a	кВт	7,5	11
Напор насоса с учетом падения		м.вод.ст.	20,2	22,8
Объем расширительного бака		Л	80	80
	еля (вход/выход)	MM	DN125	DN125
Габаритные размеры и мас				
Длина		MM	3530	4700
Ширина		MM	2300	2300
Высота		MM	2500	2500
Масса (брутто)		КГ	2900	3870
Масса (рабочая)		КГ	3000	4020

Примечания


Параметры в таблице указаны при следующих условиях:


- Коэффициент загрязнения испарителя 0,018 м² °С/кВт.
- Хладоноситель: вода.
- Значения холодопроизводительности даны при параметрах;
- температура воды на входе/выходе водяного теплообменника 12/7 °C;
- температура наружного воздуха 35 °C (DB)/24 °C (WB).

- Теплоноситель: вода.
- Значения теплопроизводительности даны при параметрах:
- температура воды на входе/выходе водяного теплообменника 40/45 °C;
- температура наружного воздуха 7 °C (DB)/6 °C (WB).
 Данные уровня звукового давления получены замером на расстоянии 1 метра.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Н, мм	Выход воды	Вход воды
LUC-FHMA340CA(C)(P)-B	3530	2300	2500	430	385	DN125	DN125
LUC-FHMA460CA(C)(P)-B	4700	2300	2500	430	1820	DN125	DN125

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Чиллеры

модульные с воздушным конденсатором с винтовыми компрессорами

Модульные чиллеры LESSAR с воздухоохлаждаемым конденсатором и винтовыми полугерметичными компрессорами— высокоэффективные холодильные машины с холодопроизводительностью модульной системы от 373 до 11 288 кВт.

Модельный ряд чиллеров **LUC-SSA(D)A...CXH** состоит из 8 моделей. Максимальная холодопроизводительность одного агрегата — 1411 кВт.

Данный модельный ряд характеризуется оптимальным соотношением цена/качество и уже успел зарекомендовать себя на ряде крупных объектов, таких как Пенсионный фонд России в Красноярске, Ижевский электромеханический завод «Купол», ЦУМ в Кирове, Проектный институт «Союзплодовощпроект» в Краснодаре, гипермаркеты «Лента», и других.

Использование современных технологий при создании и совершенствовании конструкции холодильных машин, а также многолетний опыт производства позволили создать модельный ряд модульных чиллеров с холодопро-изводительностью модульной системы от 373 до 11 288 кВт, которая достигается благодаря возможности объединения до восьми агрегатов в единую систему холодоснабжения и работе в режиме ведущий/ведомый.

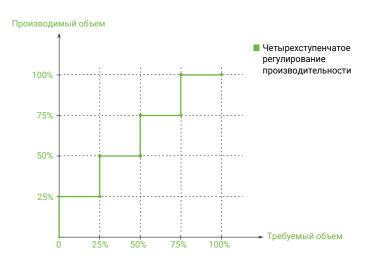
Гибкость подбора и монтажа обеспечивается за счет того, что любой агрегат такой модульной системы может выступать в качестве ведущего. Работа нескольких агрегатов в группе осуществляется в режиме ведущий/ведомый — один чиллер является ведущим, остальные чиллеры являются ведомыми, при этом каждый из чиллеров может быть как ведущим, так и ведомым, что упрощает проектирование и эксплуатацию.

Чиллеры LESSAR LUC-SSA(D)A...CXH оснащены высокоэффективными двухвинтовыми полугерметичными компрессорами Bitzer с асимметричным профилем зубьев.

Преимущества модульной системы перед моноблочными чиллерами

При моноблочном исполнении в случае выхода чиллера из строя система останавливается на время ремонта. В модульной системе при выходе из строя одного из чиллеров данный модуль изымается из системы холодоснабжения для ремонта или замены, а вся остальная система продолжает работать. При размещении системы холодоснабжения на крыше здания несколько модулей можно разместить равномерно по всей площади в соответствии с требованиями о допустимой нагрузке. Таким образом, общая масса системы будет равномерно распределена по всей площади кровли.

Компрессор


Винтовые чиллеры LESSAR с воздушным охлаждением конденсатора оснащены высокоэффективным двухвинтовым полугерметичным компрессором Bitzer с асимметричным профилем зубьев. Профили винтов оптимизированы и запатентованы в европейском и американском патентных ведомствах. Винтовая пара имеет соотношение 5:6 по числу зубьев на ведущем и ведомом роторах соответственно. Роторы изготовлены на высокоточном станке с числовым программным управлением для минимизации вибраций и трения винтов в процессе эксплуатации компрессора. Тщательный контроль в процессе изготовления винтовой пары обеспечивает надежную работу компрессора в течение всего срока службы.

Винтовой компрессор оснащен высокоэффективным встроенным маслоотделителем, который выгодно отличается компактностью и меньшей массой по сравнению с внешними маслоотделителями других производителей. Подача масла в винтовой компрессор на смазку подшипников и винтовой пары осуществляется благодаря разности давлений нагнетания и всасывания внутри компрессора, поэтому отсутствует необходимость в дополнительном масляном насосе и не требуется сложная система циркуляции масла, что повышает надежность работы компрессора.

Компрессоры Bitzer

Регулирование холодопроизводительности винтового компрессора осуществляется автоматически. В зависимости от тепловой нагрузки на чиллер загрузка компрессора осуществляется ступенчато на 25%, 50%, 75% или 100%. Такое регулирование позволяет значительно сократить эксплуатационные расходы.

Конденсатор

Воздушный конденсатор изготовлен из медных трубок с внутренней насечкой для увеличения интенсивности теплоотдачи при конденсации парообразного фреона. Медные трубки снаружи оребрены алюминиевыми ламелями для повышения коэффициента теплоотдачи со стороны наружного воздуха. V-образная конструкция теплообменной поверхности конденсатора обеспечивает компактность конденсатора. Конденсатор оснащен малошумными низкооборотными осевыми вентиляторами с пластиковыми крыльчатками.

Испаритель

Теплообменная поверхность кожухотрубного испарителя состоит из пучка медных труб с внутренним рифлением, что обеспечивает высокий коэффициент теплопередачи. Применение испарителя кожухотрубного типа имеет существенное преимущество при эксплуатации чиллера из-за его меньшей подверженности разморозке по сравнению с пластинчатыми испарителями.

Электронный расширительный вентиль -

Электронный расширительный вентиль Danfoss регулирует расход хладагента, поступающего в кожухотрубный испаритель, контролирует перегрев хладагента на всасывании в компрессор. Использование электронного расширительного вентиля позволяет системе управления чиллером быстрее реагировать на изменяющуюся тепловую нагрузку на чиллер, повышая точность поддержания температуры охлажденной воды по сравнению с механическими TPB.

Интеллектуальное управление

Управление чиллером осуществляется электронной платой управления, которая поддерживает возможность сетевого управления модульной системой до восьми чиллеров в режиме ведущий/ведомый по сетевому интерфейсу RS485. Панель управления чиллера оснащена цветным LCD-дисплеем с сенсорным управлением. Существует возможность подключения к системе BMS по сетевому протоколу Modbus.

Защитные устройства

В чиллере предусмотрен высокий уровень автоматической защиты от высокого/низкого давления хладагента, отсутствия протока воды (при установке реле протока), перегрузки электродвигателя, обрыва фазы. Контролируется правильность чередования фаз, уровень масла в компрессоре и давление масла. Испаритель оснащен предохранительным клапаном хладагента и защитой от размораживания.

Чиллеры LUC-SSA(D)A...CXH

модульные с воздушным конденсатором с винтовыми компрессорами

Охлаждение

R134a

Хладагент R134a

Двухвинтовой компрессор

Благодаря возможности объединения модульных чиллеров с винтовыми компрессорами в систему до 8 агрегатов и работе в режиме ведущий/ ведомый диапазон холодопроизводительности модульной системы может составлять от 373 до 11 288 кВт. При этом каждый чиллер может быть как ведущим, так и ведомым. Чиллеры оснащены высокоэффективными двухвинтовыми полугерметичными компрессорами торговой марки Bitzer, давно зарекомендовавшей себя в системах холодоснабжения благодаря надежности, энергоэффективности, а также большому ресурсу работы.

Корпус

Основание и панели сделаны из оцинкованной и окрашенной стали. Каркас укомплектован защитными решетками, обеспечивающими удобный доступ при проведении технического обслуживания.

Компрессор

Полугерметичный двухвинтовой компрессор Bitzer. Оснащен встроенным маслоотделителем, обладающим высокой степенью маслоотделения. Четырехступенчатое регулирование производительности для каждого компрессора.

Фреоновый контур

Включает в себя фильтр-осушитель, смотровое стекло, электронный расширительный вентиль, датчик защиты по высокому и низкому давлению, предохранительный клапан, манометры низкого/ высокого давления, датчик защиты от разморозки, экономайзер (в зависимости от модели чиллера).

Водяной теплообменник

Кожухотрубный испаритель покрыт тепловой изоляцией, оснащен соединительными фитингами типа Victaulic.

Конденсатор

М-образная конструкция теплообменной поверхности конденсатора обеспечивает его компактность.

Вентиляторы

Малошумные низкооборотные осевые вентиляторы с пластиковыми крыльчатками и защитной решеткой.

Блок управления

Блок управления укомплектован контакторами, защитой всех компонентов

Электронная плата управления поддерживает возможность сетевого управления модульной системой чиллеров (до 8 чиллеров) в режиме ведущий/ведомый по сетевому интерфейсу RS485, при этом любой чиллер может быть ведущим. Поддержка протокола связи Modbus, совместимого с BMS.

Панель управления

Панель управления чиллера оснащена цветным LCD-дисплеем с сенсорным управлением.

Диапазон работы

- Рабочий диапазон температуры наружного воздуха от +10 до +43 °C.
- Рабочий диапазон температуры хладоносителя на выходе из испарителя от +5 до +15 °C.
- Максимальная разность температур хладоносителя на входе/ выходе: 8 °C.

Модели с расширенным рабочим диапазоном температуры наружного воздуха (исполнение -**T**)

■ Рабочий диапазон температуры наружного воздуха от +15 до +52 °C.

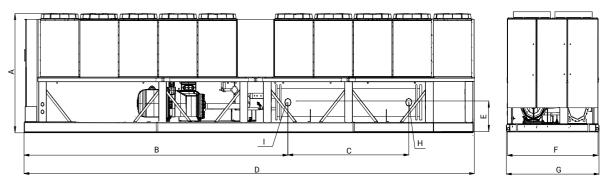
Опции

- Виброопоры пружинные.
- Низкотемпературный комплект до −15 °C.

Технические характеристики

Чиллер LUCCXH		SSAA380	SSAA500	SSAA600	SSAA720	SSDA900	SSDA1000	SSDA1200	SSDA1420
Холодопроизводительность	кВт	373	493	591	716	891	990	1196	1411
Потребляемая мощность компрессоров	кВт	109,6	139,8	163	210	251,4	280	342,6	417
Хладагент					R1:	34a			
Расход хладоносителя в испарителе	м³/ч	64	85	101,5	123	154	170	206	243
Гидравлическое сопротивление испарителя	кПа	39	52	56	58	70	72	71	7
Максимальное рабочее давление хладоносителя	МПа				1	,0			
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN125	DN125	DN125	DN150	DN150	DN150	DN200	DN200
Тип компрессора					ВИНТ	овой			
Количество компрессоров	ШТ.	1	1	1	1	2	2	2	2
Количество фреоновых контуров	ШТ.	1	1	1	1	2	2	2	2
Количество ступеней регулирования холодопроизводительности	ШТ.	4	4	4	4	8	8	8	8
Тип вентилятора					oce	вой			
Количество вентиляторов	ШТ.	6	8	10	10	14	16	16	20
Потребляемая мощность вентиляторов	кВт	2,4×6	2,4×8	2,4×10	2,4×10	2,4×14	2,4×16	2,4×16	2,4×20
Расход воздуха	м³/ч	23000×6	23 000×8	23 000×10	23 000×10	23 000×14	23 000×16	23 000×16	23 000×20
Заправка хладагента	КГ	76	90	105	140	76 + 90	90 + 90	105 + 105	140+140
Максимально возможное количество модулей		8	8	8	8	8	8	8	8
Внутренний объем испарителя (сторона хладоносителя)	Л	222	308	340	520	620	600	770	910
Электропитание	ф/В/Гц				3/38	0/50			
Габаритные размеры и масса									
Длина	MM	3810	4865	5800	5800	8800	9640	9640	11 700
Ширина	MM	2280	2280	2280	2280	2280	2280	2280	2280
Высота	MM	2400	2400	2400	2400	2400	2400	2400	2400
Масса (сухая)	КГ	3920	4420	5160	5750	8050	8410	9210	10 730
Масса (рабочая)	КГ	4140	4730	5500	6270	8670	9010	9980	11 640
Виброопоры пружинные*	-	LZ-A380CXH	LZ-A500CXH	LZ-A600CXH	LZ-A720CXH	LZ-A900CXH	LZ-A1000CXH	LZ-A1200CXH	LZ-A1420CXH

Примечание


Параметры в таблице указаны при следующих условиях:

- Коэффициент загрязнения испарителя 0,018 м² °С/кВт
- Хладоноситель: вода.
- * Опции.ц

- Значения холодопроизводительности даны при параметрах;
- температура воды на входе/выходе водяного теплообменника 12/7 °C;
- температура наружного воздуха 35 °C (DB)/24 °C (WB).

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	G, мм	н	
LUC-SSAA380CXH	2400	826	2330	3810	544	2242	2280	Вход воды DN125	Выход воды DN125
LUC-SSAA500CXH	2400	1191	2350	4865	588	2242	2280	Вход воды DN125	Выход воды DN125
LUC-SSAA600CXH	2400	1703	2350	5800	668	2242	2280	Вход воды DN125	Выход воды DN125
LUC-SSAA720CXH	2400	1428	2975	5800	668	2242	2280	Вход воды DN150	Выход воды DN150
LUC-SSDA900CXH	2400	5022	2950	8800	700	2260	2280	Выход воды DN150	Вход воды DN150
LUC-SSDA1000CXH	2400	5820	2950	9640	700	2260	2280	Выход воды DN150	Вход воды DN150
LUC-SSDA1200CXH	2400	4223	3930	9640	545	2260	2280	Выход воды DN200	Вход воды DN200
LUC-SSDA1420CXH	2400	6800	3930	11 700	545	2260	2280	Выход воды DN200	Вход воды DN200

Примечания

- Количество вентиляторов на чертеже указано для чиллера LUC-SSDA1420CXH.
- Расположение патрубков входа/выхода хладоносителя у чиллеров LUC-SS(D)А...СХН может отличаться от приведенного чертежа. Уточняйте их расположение при заказе оборудования.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Чиллеры LESSAR

модульные с воздушным конденсатором с инверторным винтовым компрессором с системой Free Cooling

Для экономии потребления электроэнергии в осеннезимний период года в системах кондиционирования воздуха крупных ЦОД, в системах холодоснабжения технологических процессов промышленных предприятий различных отраслей промышленности все чаще высокой энергоэффективностью в режиме парокомнаходят применение системы фрикулинга (от англ. Free cooling) или естественного охлаждения благодаря при переменных тепловых нагрузках от потребителя использованию холодного окружающего воздуха как холода благодаря применению инверторных винтовых альтернативы парокомпрессионному охлаждению.

Новые модульные чиллеры LESSAR LUC-VC...CXF-FC с воздушным охлаждением конденсатора с инверторными винтовыми компрессорами Hanbell и встроенной системой естественного охлаждения обладают прессионного охлаждения и особо энергоэффективны

Преимущества схемного решения на базе чиллера LESSAR с системой Free Cooling

- Высокая энергоэффективность системы холодоснабжения достигается за счет останова компрессора
- Возможность круглогодичной работы в режиме охлаждения.
- Отключение компрессоров в холодное время года увеличивает их срок службы.

За счет экономии электроэнергии дополнительные затраты на чиллер с системой Free Cooling окупаются за относительно небольшой срок. По истечении срока окупаемости владелец чиллера получает выгоду за счет экономии электроэнергии.

Схемное решение на базе чиллера с системой Free Cooling может быть применено для различных типов объектов в случае ориентированности на энергоэффективное решение, а также когда на объекте необходимо круглогодичное охлаждение. Особенно актуальным это решение является для таких объектов, как ЦОД, имеющих большие теплопритоки в течение всего года. Большие теплопритоки подразумевают большое потребление электроэнергии для охлаждения. В этом случае экономия электроэнергии за счет использования чиллеров с системой Free Cooling будет особенно ощутимой.

Стоит отметить, что срок окупаемости системы естественного охлаждения в значительной степени зависит от региона установки (количества суток работы чиллера в режиме Free Cooling). Таким образом, в регионах с холодным климатом срок окупаемости меньше, чем в регионах с теплым климатом.

Благодаря возможности объединения модульных чиллеров с инверторными винтовыми компрессорами с системой Free Cooling в одну систему холодоснабжения до 8 агрегатов и работе в режиме ведущий/ведомый диапазон холодопроизводительности модульной системы может составлять от 379 до 10 256 кВт.

Преимущества модульных систем холодоснабжения LESSAR

- Сохранение работоспособности системы холодоснабжения при проведении технического обслуживания. Один чиллер отключается от системы, остальные продолжают работать.
- Возможность постепенного наращивания холодопроизводительности. Например, такой подход актуа-
- Возможность равномерного распределения массы системы холодоснабжения на крыше здания в со-
- Распределение нагрузки между несколькими чиллерами, а также выравнивание часов наработки чил-

Компрессор

Модульные чиллеры LESSAR с системой Free Cooling оснащены высокоэффективным инверторным двухвинтовым полугерметичным компрессором. Электродвигатель компрессора, а также электрические компоненты частотного преобразователя (инвертора) охлаждаются хладагентом. По сравнению с частотными преобразователями с воздушным охлаждением, инвертор с охлаждением хладагентом работает более стабильно и менее подвержен влиянию внешней среды. Для снижения уровня шума при работе чиллера компрессоры установлены в шумоизолирующих боксах. Двухступенчатая система возврата масла включает в себя встроенный в компрессор маслоотделитель и внешний центробежный маслоотделитель.

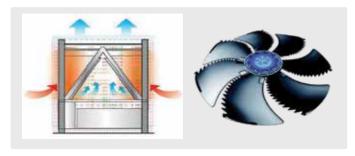
Преимущества инверторных винтовых компрессоров в чиллерах LESSAR

- Более точное поддержание температуры хладоносителя по сравнению с неинверторными компрес-
- Высокая энергоэффективность и более низкое электропотребление по сравнению с винтовыми ком-
- Быстрый запуск чиллера. Выход на 100% производительности происходит всего за 180 секунд после
- Высокая надежность и длительный ресурс работы узлов и компонентов.
- Низкий уровень шума.
- Ремонтопригодность.

Испаритель —

Испаритель является одним из основных элементов холодильной машины, в котором рабочее вещество кипит за счет теплоты, подводимой от охлаждаемой жидкости. В чиллерах LESSAR используются кожухотрубные испарители затопленного типа, покрытые тепловой изоляцией и оснащенные соединительными патрубками типа Victaulic.

Теплообменная поверхность кожухотрубного испарителя состоит из пучка медных труб с внутренним рифлением, что обеспечивает эффективную теплопередачу. Применение испарителя кожухотрубного типа имеет существенное преимущество при эксплуатации чиллера из-за его меньшей подверженности замораживанию по сравнению с пластинчатыми испарителями.



Конденсатор

Воздушный конденсатор изготовлен из медных трубок с внутренней насечкой для увеличения интенсивности теплопередачи при конденсации парообразного фреона.

Медные трубки снаружи оребрены алюминиевыми ламелями для увеличения площади теплообменной поверхности. М-образная конструкция теплообменной поверхности конденсатора обеспечивает его компактность. Конденсатор оснащен малошумными осевыми вентиляторами.

Электронный расширительный вентиль — Интеллектуальное управление –

Вместо традиционного механического терморегулируещего вентиля LESSAR предлагает своим клиентам возрасширительного вентиля. Электронные расширительные вентили выполняют те же функции, что и механические — понижение давления хладагента внутри контура, правильное заполнение испарителя жидким хладагентом и поддержание перегрева хладагента, для того чтобы убедиться, что весь фреон перешел в газообразное состояние на линии всасывания компрессора. Однако, электронный расширительный вентиль быстрее реагирует на изменение тепловой нагрузки, что обеспечивает более точное поддержание температуры хладоносителя. Применение электронного расширительного вентиля позволяет оптимизировать энергопотребление агрегатов и экономить электроэнергию.

Управление чиллером осуществляется платой управления с функцией диагностики неисправностей. Плата можность использовать все достоинства электронного поддерживает возможность сетевого управления модульной системой до восьми чиллеров в режиме ведущий/ведомый по сетевому интерфейсу RS485. Панель управления чиллера оснащена 7-дюймовым цветным LCD-дисплеем с сенсорным управлением. Существует возможность подключения к системе BMS по сетевому протоколу ModBus RTU.

Модульные чиллеры с системой Free Cooling серии LUC-VS...CXF-FC укомплектованы 3-ходовым вентилем (7) в контуре хладоносителя и дополнительным теплообменником естественного охлаждения (6), встроенным в теплообменник конденсатора. Можно выделить следующие режимы работы чиллера с функцией естественного охлаждения:

- Режим парокомпрессионного охлаждения, когда температура наружного воздуха выше требуемой температуры хладоносителя на выходе чиллера. Естественное охлаждение физически невозможно, необходимая холодопроизводительность обеспечивается за счет работы фреонового контура чиллера.
- Переходный режим, когда температура наружного воздуха ниже требуемой температуры хладоносителя на выходе чиллера, но недостаточна для обеспечения 100% холодопроизводительности за счет естественного охлаждения. Полная холодопроизводительность частично обеспечивается работой фреонового контура, частично — за счет естественного охлаждения.
- Режим естественного охлаждения (Free Cooling). Температура наружного воздуха ниже требуемой температуры хладоносителя на выходе чиллера, 100% холодопроизводительности обеспечивается естественным охлаждением.

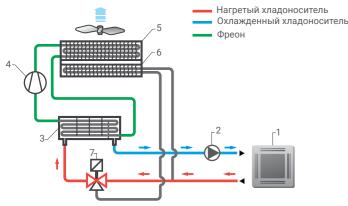


Схема чиллера LUC-VS...CXF-FC. Режим парокомпрессионного охлаждения (компрессор в работе).

1 — потребитель холода; 2 — внешний насос хладоносителя (в комплект поставки не входит); 3 — испаритель; 4 — компрессор; 5 — воздушный конденсатор; 6 — теплообменник Free Cooling; 7 — 3-ходовой вентиль.

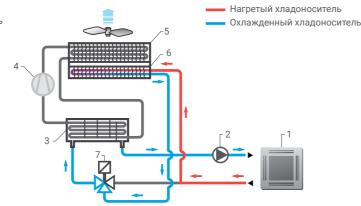


Схема чиллера LUC-VS...CXF-FC. Режим естественного охлаждения (компрессор остановлен)

1 — потребитель холода; 2 — внешний насос хладоносителя (в комплект поставки не входит); 3 — испаритель; 4 — компрессор; 5 — воздушный конденсатор; 6 — теплообменник Free Cooling; 7 — 3-ходовой вентиль.

При работе в режиме парокомпрессионного охлаждения 3-ходовой вентиль (7) направляет отепленный хладоноситель в испаритель (3) чиллера, где происходит охлаждение за счет отвода тепла к кипящему хладагенту. Охлажденный хладоноситель подается насосом (2) потребителю холода (1). Пары хладагента откачиваются компрессором (4) из испарителя (3). Пар хладагента сжимается в компрессоре до высокого давления и температуры (выше температуры наружного воздуха) и нагнетается в воздушный конденсатор (5). В воздушном конденсаторе хладагент конденсируется за счет отвода тепла окружающим воздухом, который циркулирует через теплообменник конденсатора посредством вентилятора.

При работе в режиме Free Cooling 3-ходовой вентиль (7) перенаправляет хладоноситель в теплообменник естественного охлаждения (6). В теплообменнике (6) хладоноситель охлаждается окружающим воздухом, циркулирующим через теплообменник посредством вентилятора. Охлажденный хладоноситель, пройдя через испаритель (без охлаждения), подается потребителю. В этом режиме компрессор чиллера остановлен.

Переходный режим отличается от режима Free Cooling тем, что предварительно охлажденный в теплообменнике (б) хладоноситель доохлаждается в испарителе (3) за счет работы фреонового контура.

Чиллеры с Free Cooling могут поставляться в конфигурации со встроенным промежуточным теплообменником. Модульные чиллеры с системой Free Cooling серии LUC-VS...CXF-FC-I укомплектованы теплообменником естественного охлаждения (6), промежуточным теплообменником (8), насосом контура Free Cooling (7), насосом защиты от замерзания (2).

В режиме парокомпрессионного охлаждения отепленная вода проходит через промежуточный теплообменник (8) без охлаждения и направляется в испаритель (3), где происходит ее охлаждение за счет работы фреонового контура. Охлажденный хладоноситель направляется к потребителю холода (1).

При работе в режиме Free Cooling отепленная вода от потребителя охлаждается в промежуточном теплообменнике (8) за счет теплообмена с водогликолевой смесью, циркулирующей в контуре Free Cooling. Водогликолевая смесь в свою очередь охлаждается в теплообменнике Free Cooling (6) за счет теплообмена с окружающим воздухом, циркулирующим через теплообменник посредством вентилятора. Охлажденная вода проходит через испаритель (3) без охлаждения и направляется к потребителю холода.

В переходном режиме работы предварительно охлажденная в промежуточном теплообменнике (8) вода доохлаждается в испарителе (3) за счет работы фреонового контура.

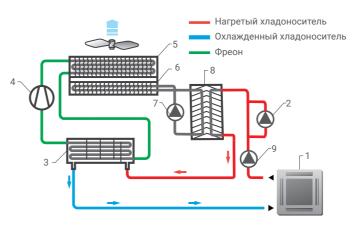


Схема чиллера LUC-VS...CXF-FC-I. Режим парокомпрессионного охлаждения (компрессор в работе).

1 — потребитель холода; 2 — насос защиты от замерзания; 3 — испаритель; 4 — компрессор; 5 — воздушный конденсатор; 6 — теплообменник Free Cooling; 7 — насос контура Free Cooling; 8 — промежуточный теплообменник; 9 — внешний насос хладоносителя (в комплект поставки не входит).

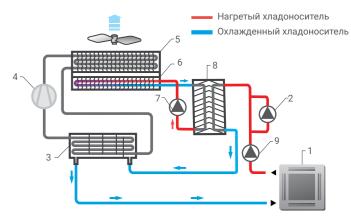
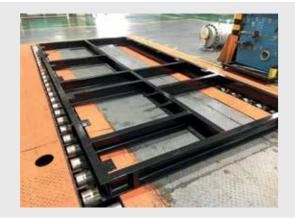


Схема чиллера LUC-VS...CXF-FC-I. Режим естественного охлаждения (компрессор остановлен).

1 — потребитель холода; 2 — насос защиты от замерзания; 3 — испаритель; 4 — компрессор; 5 — воздушный конденсатор; 6 — теплообменник Free Cooling; 7 — насос контура Free Cooling; 8 — промежуточный теплообменник; 9 — внешний насос хладоносителя (в комплект поставки не входит).

Благодаря наличию в чиллерах LUC-VS...CXF-FC-I насоса защиты от замерзания, а также электронагревателей водяных теплообменников, возможно круглогодичное использование воды вместо водогликолевых смесей в контуре потребителя. Рекомендуется установка системы АВР с резервным источником электропитания.

Такое решение актуально для объектов, где:


- недопустима подача гликолевых смесей в охлаждающие приборы;
- имеется разветвленная сеть потребителей с большим гидравлическим сопротивлением;
- затруднено техническое обслуживание (чистка водяных теплообменников).

LESSAR PROF

Коррозионностойкое исполнение —

Опционально чиллеры могут быть изготовлены в коррозионностойком исполнении. Такое исполнение включает в себя следующие доработки:

 Опорная рама чиллера покрыта антикоррозионной краской. Элементы корпуса выполнены из оцинкованной стали, окрашены антикоррозионной порошковой краской. Рама и элементы корпуса проходят испытания в солевой камере, где подвергаются воздействию солевого тумана в течение 1000 часов.

Оребрение воздушного теплообменника выполнено из алюминия и покрыто антикоррозийным составом.
 Вентиляторы конденсатора оснащены валом двигателя из нержавеющей стали. Защитные решетки вентиляторов покрыты антикоррозионной порошковой краской. Все элементы проходят испытания в солевой камере, где подвергаются воздействию солевого тумана в течение 1000 часов.

- Щит управления окрашен антикоррозионной порошковой краской. Проходит испытания в солевой камере, где подвергается воздействию солевого тумана в течение 1000 часов. Все крепежные элементы, кроме токопроводящих, изготовлены из нержавеющей стали. Плата с электронными компонентами имеет влагостойкое покрытие.
- Внутренние элементы крепления (винты/болты и гайки) изготовлены из углеродистой стали, покрыты антикоррозийным, не содержащим хром составом типа Dacromet или никелированной силиконовой смазкой. Внешние элементы крепления (винты/болты и гайки) изготовлены из коррозионностойкой стали (SUS410) либо из никелированной углеродистой стали. Все компоненты проходят испытания в солевой камере, где подвергаются воздействию солевого тумана в течение 720 часов.

Маркировка модульных чиллеров с системой Free Cooling –

LUC - V S A A 780 C X F - FC - I - C

- 1 LUC чиллер торговой марки LESSAR
- 2 Компрессор
 - V инверторный винтовой компрессор
- 3 Тип компрессора
 - полугерметичный компрессор
- 4 Количество компрессоров
 - А один компрессор
 - два компрессора
- 5 Тип конденсатора
 - А встроенный конденсатор воздушного охлаждения
- 6 Холодопроизводительность, кВт
- 7 Тип электропитания
 - С 380 В / 50 Гц / 3 фазы
- 8 Тип фреона
 - X R134a
- 9 Тип испарителя
 - Кожухотрубный испаритель затопленного типа
- 10 Функция
 - FC система естественного охлаждения Free Cooling
- 11 Конфигурация
 - со встроенным промежуточным теплообменником
- 12 Исполнение
 - С коррозионностойкое
 - SP специальное

Чиллеры LUC-VS...CXF-FC(-I)

модульные с воздушным конденсатором с инверторным винтовым компрессором с системой Free Cooling

Хладагент R134a

Охлаждение

Возможность исполнения чиллера с промежуточным теплообменником

Инверторный винтовой компрессор

Возможность коррозионностойкого исполнения

диапазон холодопроизводительности модульной системы может составлять от 379 до 10 256 кВт.

Общее описание

Чиллер с воздушным охлаждением конденсатора с инверторным винтовым компрессором с системой естественного охлаждения (Free Cooling) оснащен осевыми вентиляторами, предназначен для наружной установки.

Основание и панели сделаны из оцинкованной и окрашенной стали.

Компрессор

Полугерметичный винтовой компрессор с инверторным приводом обеспечивает плавное регулирование производительности в диапазоне от 10 до 100%. Компрессор установлен в шумоизолирующий бокс. Двухступенчатая система возврата масла включает в себя встроенный в компрессор маслоотделитель и внешний центробежный маслоотделитель.

Фреоновый контур

Включает в себя запорный вентиль, фильтр-осушитель, электронный расширительный вентиль, реле защиты по высокому и низкому давлению, предохранительный клапан.

Водяной теплообменник

Кожухотрубный испаритель затопленного типа покрыт тепловой изоляцией, оснащен соединительными патрубками типа Victaulic.

Водяной контур (исполнение с промежуточным еплообменником)

Содержит промежуточный пластинчатый теплообменник, насос защиты от замерзания хладоносителя, электронагреватели водяных теплообменников.

Контур естественного охлаждения

Включает в себя теплообменник естественного охлаждения, изготовленный из медных трубок с алюминиевым оребрением, 3-ходовой вентиль.

Контур естественного охлаждения (исполнение с промежуточным теплообменником)

Включает в себя теплообменник естественного охлаждения, изготовленный из медных трубок с алюминиевым оребрением, промежуточный пластинчатый теплообменник, насос.

Воздушный конденсатор

Изготовлен из медных труб с алюминиевым оребрением. М-образная конструкция теплообменной поверхности обеспечивает компактность конденсатора.

Вентиляторы

Малошумные осевые вентиляторы с защитной решеткой.

Блок управления

Блок управления укомплектован контакторами, защитой всех компонентов

Плата управления

Предназначена для автоматического управления чиллером, имеет функцию диагностики неисправностей и поддерживает протокол связи ModBus RTU, совместимый с BMS. Плата поддерживает возможность сетевого управления модульной системой чиллеров (до 8 чиллеров) в режиме ведущий/ведомый по сетевому интерфейсу RS485.

Панель управления

Панель управления чиллера оснащена LCD-дисплеем с сенсорным управлением.

Диапазон работы

- Рабочий диапазон температуры наружного воздуха от -25 до
- Рабочий диапазон температуры хладоносителя на выходе чиллера от +4 до +20 °C.
- Разность температур хладоносителя на входе/выходе: от 4 до

Опции

- Виброопоры пружинные.
- Панель дистанционного управления.
- Плата сетевого протокола BACnet IP, BACnet MS/TP.
- Инверторные вентиляторы.
- Коррозионностойкое исполнение.

Технические характеристики —

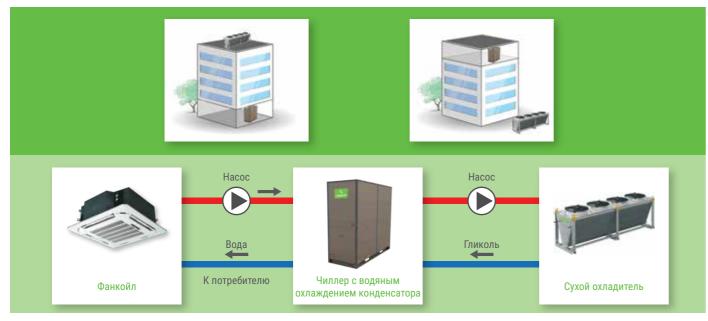
LUC-VSCXF-FC		AA380	AA450	AA570	AA670	AA780	AA900	DA1070	DA1280
Холодопроизводительность	кВт	378,9	448,3	571,1	671,6	779,5	895,5	1068	1282
Потребляемая мощность компрессоров	кВт	104,4	124,2	161,6	190,6	220,1	253,5	302,9	370,9
Температура наружного воздуха, при которой достигается 100 % холодопроизводительности в режиме Free Cooling	°C	1,5	0,0	-0,2	0,0	0,1	0,1	-0,4	-1,2
Потребляемая мощность в режиме Free Cooling	кВт	20	20	25	30	35	40	45	50
Хладагент					R13	34a			
Заправка хладагента	КГ	126	148	168	192	225	280	2×168	2×200
Расход хладоносителя в испарителе	м³/ч	70,5	83,4	106,2	124,9	145,0	166,6	198,8	238,6
Гидравлическое сопротивление испарителя	кПа	50	47	82	78	90	82	84	78
Гидравлическое сопротивление чиллера в режиме Free Cooling	кПа	70	77	133	85	103	107	121	131
Максимальное рабочее давление хладоносителя	МПа				1	,0			
Диаметр патрубков хладоносителя (вход/выход)	MM	DN150	DN150	DN150	DN150	DN150	DN200	DN200	DN200
Тип компрессора					Винтовой и	нверторныі	Й		
Количество компрессоров	ШТ.	1	1	1	1	1	1	2	2
Количество фреоновых контуров	ШТ.	1	1	1	1	1	1	2	2
Регулирование холодопроизводительности				Плавное	10-100%			Плавно	e 5-100%
Тип вентиляторов					oce	вой			
Количество вентиляторов	ШТ.	8	8	10	12	14	16	18	20
Потребляемая мощность вентиляторов	кВт	20	20	25	30	35	40	45	50
Электропитание	ф/В/Гц				3/38	0/50			
Габаритные размеры и масса									
Длина	MM	5740	5540	6545	7650	8655	9660	10 665	11 670
Ширина	MM	2300	2300	2300	2300	2300	2300	2300	2300
Высота	MM	2460	2460	2460	2460	2460	2460	2460	2460
Масса (сухая)	КГ	5400	6030	6580	7350	8500	8930	11 380	12 350
Масса (рабочая)	КГ	5900	6570	7180	8050	9300	9830	12 380	13 350

LUC-VSCXF-FC-I		AA380	AA450	AA570	AA670	AA780	AA900	DA1070	DA1280
Холодопроизводительность	кВт	386,8	457,7	583,1	685,7	795,8	914,3	1091	1309
Потребляемая мощность компрессоров	кВт	100,3	119,7	156,6	184,9	213,2	244,4	288,9	352,5
Температура наружного воздуха, при которой достигается 100 % холодопроизводительности в режиме Free Cooling	°C	-1,2	-2,7	-2,9	-2,6	-2,5	-2,5	-3,1	-4,0
Потребляемая мощность в режиме Free Cooling	кВт	25,1	25,7	31,6	37,6	44,0	51,6	62,0	72,0
Хладагент					R1	34a			
Заправка хладагента	КГ	126	148	168	192	225	280	2×168	2×200
Расход хладоносителя в испарителе	М3/Ч	66,3	78,4	99,9	117,5	136,4	156,7	187,0	224,4
Гидравлическое сопротивление чиллера	кПа	107	98	130	128	137	131	128	128
Максимальное рабочее давление хладоносителя	МПа				1	,0			
Диаметр патрубков хладоносителя (вход/выход)	MM	DN150	DN150	DN150	DN150	DN150	DN200	DN200	DN200
Тип компрессора					Винтовой и	нверторныі	Ĭ		
Количество компрессоров	ШТ.	1	1	1	1	1	1	2	2
Количество фреоновых контуров	ШТ.	1	1	1	1	1	1	2	2
Регулирование холодопроизводительности				Плавное	10-100%			Плавное	5-100%
Тип вентиляторов					oce	вой			
Количество вентиляторов	ШТ.	8	8	10	12	14	16	18	20
Потребляемая мощность вентиляторов	кВт	20	20	25	30	35	40	45	50
Потребляемая мощность насосов	кВт	5,1	5,7	6,6	7,6	9,0	11,6	17,0	22,0
Электропитание	ф/В/Гц				3/38	0/50			
Габаритные размеры и масса									
Длина	MM	6745	6545	6545	7650	8655	9660	11 670	11 670
Ширина	MM	2300	2300	2300	2300	2300	2300	2300	2300
Высота	MM	2460	2460	2460	2460	2460	2460	2460	2460
Масса (сухая)	КГ	6420	7130	8320	9200	10 230	10 920	14 350	15 440
Масса (рабочая)	КГ	6920	7670	8920	9900	11 030	11 820	15 350	16 440

Примечания

Параметры чиллеров LUC-VS...CXF-FC в таблице указаны при следующих условиях:

- Хладоноситель: этиленгликоль 25%.
- Температура хладоносителя на входе/выходе чиллера 12/7 °C.
- Температура наружного воздуха 35 °C.
- Коэффициент загрязнения испарителя 0,018 м² °С/кВт.


Параметры чиллеров LUC-VS...CXF-FC-I в таблице указаны при следующих условиях:

- Хладоноситель: вода.
- Температура хладоносителя на входе/выходе чиллера 12/7 °C.
- Температура наружного воздуха 35 °C.
- Коэффициент загрязнения испарителя 0,018 м² °С/кВт.

Чиллеры LESSAR

модульные с водяным охлаждением конденсатора со спиральными компрессорами

Модульные чиллеры LESSAR с водоохлаждаемым конденсатором предназначены как для охлаждения воды, так и для охлаждения водогликолевых смесей различной концентрации. Чиллеры спроектированы для размещения в техническом помещении (машинном отделении/на техническом этаже). Водяное охлаждение конденсатора осуществляется оборотной водой из сухого охладителя (сухой градирни, драйкулера) или градирни. В целях экономии воды предпочтительным является выбор замкнутого контура охлаждающей воды с установкой сухого охладителя. Сухой охладитель располагается снаружи на кровле или на специальной горизонтальной площадке.

Преимущества схемного решения на базе чиллера LESSAR с водяным охлаждением конденсатора

- Возможность круглогодичной работы.
- Снижение нагрузки на кровлю здания по сравнению с моноблочными чиллерами.
- Возможность круглогодичного использования в качестве хладоносителя воды, а не водогликолевых смесей. Это позволяет: снизить затраты на заполнение системы хладоносителем и техническое обслуживание чиллера; использовать менее мощные насосы в контуре хладоносителя.
- В отличие от чиллеров с выносным конденсатором нет ограничений по протяженности трубопроводов и перепаду высот между чиллером и сухим охладителем.
- Компактные габаритные размеры упрощают транспортировку и установку на объекте.

Благодаря возможности объединения модульных чиллеров до **16 модулей** и работе в режиме ведущий/ведомый диапазон холодопроизводительности модульной системы может составлять **от 155 до 7715 кВт**.

Преимущества модульных систем LESSAR

- Сохранение работоспособности системы при проведении технического обслуживания. Один чиллер отключается от системы, остальные продолжают работать.
- Возможность постепенного наращивания холодопроизводительности. Например, такой подход актуален при наличии нескольких очередей строительства на объекте.
- Возможность равномерного распределения массы системы холодоснабжения на крыше здания в соответствии с требованиями о допустимой нагрузке.
- Распределение нагрузки между несколькими чиллерами, а также выравнивание часов наработки чиллеров увеличивает срок службы системы.

Чиллеры оснащаются защитным корпусом. Корпус оснащен съемными панелями, обеспечивающими доступ к компонентам чиллера для выполнения технического обслуживания. Панели обеспечивают снижение уровня шума при работе чиллера.

К обечайкам испарителя и конденсатора приварены несущие профили из окрашенной стали.

Модульные чиллеры с водяным конденсатором: 1 — компрессор; 2 — испаритель; 3 — конденсатор; 4 — электрический щит; 5 — рама; 6 — корпус.

Компрессоры -

Модульные чиллеры LESSAR оснащены высокоэффективными герметичными спиральными компрессорами производства Danfoss. Такие компрессоры уже давно и успешно применяются в системах кондиционирования воздуха. Основными преимуществами таких компрессоров являются надежность, энергоэффективность, низкий уровень шума и вибрации, а также большой ресурс работы.

Испаритель -

Испаритель является одним из основных элементов холодильной машины, в котором рабочее вещество кипит за счет теплоты, подводимой от охлаждаемой жидкости. В чиллерах LESSAR используются кожухотрубные испарители, покрытые тепловой изоляцией и оснащенные патрубками для соединения типа Victaulic (соединительная муфта в комплект поставки не входит). Теплообменная поверхность кожухотрубного испарителя состоит из пучка медных труб с внутренним рифлением, что обеспечивает высокую эффективность теплопередачи.

Конденсатор –

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с увеличенным диаметром, что делает теплообменник менее требовательным к качеству охлаждающей воды и упрощает техническое обслуживание.

Электронный расширительный вентиль —

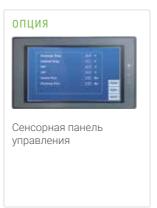
Вместо традиционного механического терморегулирующего вентиля LESSAR предлагает своим клиентам возможность использовать все достоинства электронного расширительного вентиля. Электронные расширительные вентили выполняют те же функции, что и механические — понижение давления хладагента внутри контура, правильное заполнение испарителя жидким хладагентом и поддержание перегрева хладагента, для того чтобы убедиться, что весь фреон перешел в газообразное состояние на линии всасывания компрессора. Однако, электронный расширительный вентиль быстрее реагирует на изменение тепловой нагрузки, что обеспечивает более точное поддержание температуры хладоносителя. Применение электронного расширительного вентиля позволяет оптимизировать энергопотребление агрегатов и экономить электроэнергию.

Интеллектуальное управление

Управление чиллером осуществляется платой управления с функцией диагностики неисправностей и поддержкой протокола связи ModBus RTU, совместимого с BMS. Плата поддерживает возможность сетевого управления модульной системой до 16 чиллеров. Проводной пульт управления, поставляемый в комплекте с чиллером, позволяет управлять как отдельным агрегатом, так и модульной группой до 16 чиллеров. Возможно изменение основных параметров работы, отображение аварийных кодов и установка таймера. Опционально чиллеры комплектуются панелью управления, оснащенной 7-дюймовым цветным LCD-дисплеем с сенсорным управлением.

Пульт управления (в комплекте)

Сенсорная панель управления (опция)


Чиллеры LUC-FHD(M)W...CACB

модульные в корпусе с водяным конденсатором со спиральными компрессорами

Благодаря возможности объединения модульных чиллеров в систему до 16 агрегатов и работе в режиме ведущий/ведомый диапазон холодопроизводительности модульной системы может составлять от 155 до 7715 кВт.

Общее описание

Чиллер с водяным охлаждением конденсатора предназначен для внутренней установки.

Корпус

Корпус оснащен съемными панелями, обеспечивающими доступ к компонентам чиллера для выполнения технического обслуживания. Панели обеспечивают снижение уровня шума при работе чиллера.

Компрессор

Герметичный спиральный компрессор торговой марки Danfoss оснащен встроенным обратным клапаном на линии нагнетания.

Фреоновый контур

Включает в себя фильтр-осушитель, электронный расширительный вентиль, реле защиты по высокому давлению, датчик низкого давления, датчик температуры всасывания.

Испаритель

Кожухотрубный испаритель типа покрыт тепловой изоляцией. Медные трубки выполнены с внутренней насечкой увеличения коэффициента теплоотдачи при кипении фреона.

Конденсатор

В кожухотрубном теплообменнике используются медные трубки с увеличенным диаметром, что делает теплообменник менее требовательным к качеству охлаждающей воды и упрощает техническое обслуживание.

Блок управления

Блок управления укомплектован контакторами, защитой всех компонентов.

Плата управления

Предназначена для автоматического управления чиллером, имеет функцию диагностики неисправностей и поддерживает протокол связи ModBus RTU, совместимый с BMS. Плата поддерживает возможность сетевого управления модульной системой до 16 чиллеров.

Пульт управления

Проводной пульт управления, поставляемый в комплекте с чиллером, позволяет управлять как отдельным агрегатом, так и модульной группой до 16 чиллеров. Возможно изменение основных параметров работы, отображение аварийных кодов и установка таймера.

Панель управления (опция)

Панель управления чиллера оснащена 7-дюймовым цветным LCD-дисплеем с сенсорным управлением.

Диапазон работы

- Рабочий диапазон температуры хладоносителя на выходе чиллера от +5 до +15 °C.
- Разность температур хладоносителя на входе/выходе: от 2,5 до 8 °C
- Рабочий диапазон температуры охлаждающей жидкости на входе чиллера от +20 до +40 °C.
- Разность температур охлаждающей жидкости на входе/ выходе: от 2,5 до 8 °С.

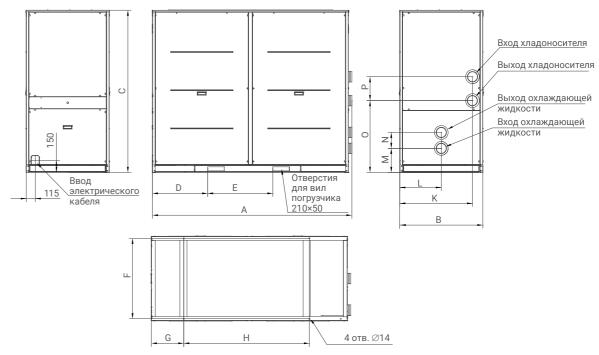
Опции

- Виброопоры пружинные.
- Реле протока испарителя.
- Реле протока конденсатора.
- Сенсорная панель управления.

Технические характеристики —

Чиллер LUC-		FHDW155CACB	FHDW243CACB	FHMW362CACB	FHMW481CACB
Холодопроизводительность	кВт	155,5	242,5	362,8	482,2
Потребляемая мощность	кВт	29	45	67,6	90,1
Хладагент			R4	10A	
Заправка хладагента	КГ	8,5+8,5	16,0+16,0	36,0+18,0	34,0+34,0
Расход хладоносителя в испарителе	м³/ч	26,8	41,7	62,4	82,9
Гидравлическое сопротивление испарителя	кПа	39	54	45	47
Максимальное рабочее давление хладоносителя	МПа		1	,0	,
Диаметр патрубков хладоносителя (вход/выход)	MM	DN80	DN80	DN125	DN125
Расход охлаждающей жидкости в конденсаторе	м³/ч	31,7	49,5	74,0	98,4
Гидравлическое сопротивление конденсатора	кПа	21	69	60	67
Максимальное рабочее давление охлаждающей жидкости	МПа		1	,0	
Диаметр патрубков охлаждающей жидкости (вход/выход)	MM	DN80	DN80	DN125	DN125
Уровень звукового давления на расстоянии 1 метра	дБ(А)	64	65	67	68
Тип компрессора			спира	льный	,
Количество компрессоров	шт.	2	2	3	4
Количество фреоновых контуров	шт.	2	2	2	2
Количество ступеней регулирования холодопроизводительности	ШТ.	2	2	3	4
Электропитание	ф/В/Гц		3/38	30/50	
Максимальный рабочий ток	А	90	144	216	288
Пусковой ток	А	305	485	557	629
Габаритные размеры и масса					
Длина	MM	2010	2540	2540	3130
Ширина	MM	750	750	1050	1050
Высота	MM	1800	2040	2040	2040
Масса транспортная	КГ	1000	1200	2100	2450
Масса рабочая	КГ	1120	1360	2350	2700

Примечания


Параметры в таблице указаны при следующих условиях:

- Хлалоноситель: вола.
- Охлаждающая жидкость конденсатора: вода.
- Температура воды на входе/выходе испарителя 12/7 °C.

- Температура воды на входе/выходе конденсатора 30/35 °C.
- Коэффициент загрязнения испарителя 0,018 м² °С/кВт. ■ Коэффициент загрязнения конденсатора 0,044 м² • °С/кВт.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	G, мм	Н, мм	К, мм	L, мм	М, мм	N, мм	О, мм	Р, мм
LUC-FHDW155CACB	2010	750	1800	470	800	705	390	1090	625	375	280	140	715	220
LUC-FHDW243CACB	2540	750	2040	760	830	705	445	1600	650	375	280	140	850	275
LUC-FHMW362CACB	2540	1050	2040	705	830	1010	445	1600	920	525	300	200	900	300
LUC-FHMW481CACB	3130	1050	2040	930	830	1010	630	1600	920	525	300	200	900	300

■ Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Чиллеры LESSAR

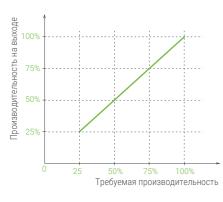
с водяным охлаждением конденсатора с винтовыми компрессорами

LESSAR обеспечивает своих партнеров высокопрофессиональным оборудованием для решения сложных инженерных задач в области систем кондиционирования воздуха. К такому профессиональному оборудованию относятся винтовые чиллеры LESSAR с водяным охлаждением конденсатора, обладающие высокой энергетической эффективностью, повышенной надежностью и длительным сроком службы благодаря применению двухвинтовых компрессоров. Оснащение этих высокопроизводительных чиллеров кожухотрубными испарителями и конденсаторами обеспечило чиллерам LESSAR значительное преимущество при эксплуатации по сравнению с чиллерами с неразборными пластинчатыми теплообменниками. Использование кожухотрубных испарителей затопленного типа с повышенным коэффициентом теплопередачи в чиллерах LESSAR является высококонкурентным преимуществом благодаря более высокой энергетической эффективности данного типа чиллеров (EER до 6,0), что позволяет существенно сэкономить на оплате потребленной электроэнергии установленных чиллеров, снизив срок окупаемости холодильного оборудования. Винтовые чиллеры LESSAR могут быть интегрированы в систему управления здания по протоколу Modbus, предоставляя проектировщикам максимальное удобство при проектировании системы автоматического управления «интеллектуальных» зданий.

Диапазон холодопроизводительности винтовых чиллеров с водяным охлаждением конденсатора составляет от 305 до 2073 кВт, что обуславливает широкий спектр их применения: от бизнес-центров и офисных зданий до крупных административно-бытовых зданий, спортивных сооружений и торгово-развлекательных комплексов.

Компрессор

Винтовой компрессор Bitzer.

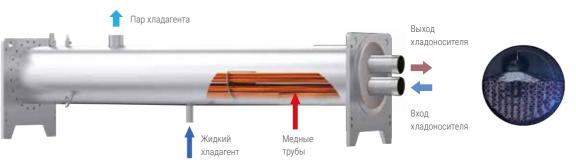

- 1 винтовая пара;
- 2 золотниковый механизм:
- 3 износостойкие подшипники;
- 4 встроенный электродвигатель;
- 5 встроенный маслоотделитель;
- 6 система подачи масла;
- 7 порт для подключения экономайзера;
- 8 встроенный обратный клапан.

В чиллерах LESSAR с водяным охлаждением конденсатора используются двухвинтовые полугерметичные компрессоры Bitzer и Hanbell. Технология производства полугерметичных компрессоров исключает необходимость установки внешней муфты для передачи крутящего момента от электродвигателя к компрессору, поскольку двигатель винтового компрессора непосредственно связан с ведущим ротором, что исключает механические потери, присутствующие в муфте, при передаче крутящего момента. В полугерметичных компрессорах отсутствует возможность утечки хладагента через торцевое сальниковое уплотнение вала компрессора, которая существует у компрессоров с сальниковым уплотнением вала. Электродвигатель, охлаждаемый парами хладагента, не требует создания дополнительной системы кондиционирования в помещении компрессорной.

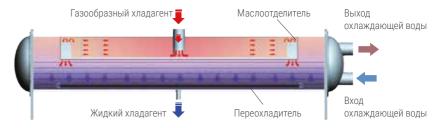
Плавное регулирование производительности компрессоров от 25% до 100% достигается за счет определенного алгоритма управления электромагнитных клапанов золотникового механизма. Также разработан модельный ряд чиллеров с инверторным приводом компрессора, обеспечивающим плавное регулирование производительности в диапазоне от 15% до 100%.

Винтовой компрессор оснащен эффективным встроенным маслоотделителем, обладающим высокой степенью маслоотделения, компактностью и меньшей массой по сравнению с внешними маслоотделителями.

Плавное регулирование производительности золотниковым механизмом



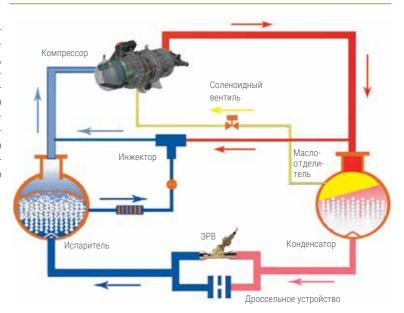
 Плавное регулирование производительности инвертором


Испаритель -

В чиллерах используются высокоэффективные кожухотрубные испарители затопленного типа. Испарители оснащены съемными крышками, что позволяет производить техническое обслуживание. Оптимизированная конструкция распределителя хладагента позволяет равномерно распределять хладагент по всей площади теплообменной поверхности, что повышает эффективность работы чиллера в целом. В испаритель встроен каплеуловитель для предотвращения уноса капель жидкого хладагента в компрессор, что повышает надежность чиллера. Патрубки входа и выхода хладоносителя оснащены соединениями типа Victaulic.

Конденсатор

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи. Внутри конденсатора установлен дополнительный компактный маслоотделитель, который также равномерно распределяет газообразный хладагент по всей теплообменной поверхности конденсатора. Конденсатор оснащен оптимизированным переохладителем жидкого хладагента с низким гидравлическим сопротивлением. Переохлаждение жидкого хладагента повышает энергоэффективность чиллера. Патрубки входа и выхода охлаждающей воды оснащены соединениями типа Victaulic.


Электронный расширительный вентиль и дроссельное устройство

Для более точного поддержания температуры охлажденного хладоносителя при переменных тепловых нагрузках дополнительно к дроссельному устройству установлен электронный расширительный вентиль.

Система возврата масла в компрессор

В чиллерах с затопленными испарителями необходимо возвращать масло, унесенное из компрессора, несмотря на высокую эффективность маслоотделителя, встроенного в винтовой компрессор. Для этого в конденсатор установлен дополнительный маслоотделитель, который повышает степень отделения масла до 99%. Возврат масла из дополнительного маслоотделителя в компрессор происходит за счет разности давления хладагента. Для возврата масла в компрессор из затопленного испарителя разработана и запатентована система масловозврата, состоящая из масляного фильтра, смотрового глазка и инжектора.

Интеллектуальное управление

Управление чиллером осуществляется платой управления с функцией диагностики неисправностей. Плата поддерживает возможность мониторинга параметров работы чиллера по протоколу Modbus RTU. Панель управления чиллера оснащена 7-дюймовым цветным LCD-дисплеем с сенсорным управлением.

Интеллектуальный алгоритм управления включает в себя следующие функции:

- Интеллектуальное управление холодопроизводительностью. Изменения тепловой нагрузки прогнозируются на основании предыстории. Также тепловая нагрузка пересматривается в реальном времени, чтобы предотвратить колебания температуры охлажденной воды.
- Безопасное управление чиллером. Система управления отслеживает тенденции изменения параметров работы чиллера и корректирует рабочие параметры для обеспечения безопасной работы.
- Интеллектуальная реакция на аварийный останов. При аварийном останове чиллера в дополнение к выполнению соответствующих защитных мер параметры неисправности сохраняются в журнале для последующей проверки и устранения.

Чиллеры с водяным охлаждением конденсатора с инверторными винтовыми компрессорами **LUC-VS...CXF**


Для обеспечения более точного поддержания температуры охлажденной воды и высокой энергоэффективности LESSAR выделил модельный ряд чиллеров, оснащенных компрессорами Bitzer с инверторным приводом. Модельный ряд включает чиллеры с холодопроизводительностью от 420 до 1660 кВт.

Преимущества инверторных винтовых компрессоров в чиллерах LESSAR

- Плавное регулирование холодопроизводительности в диапазоне от 15 до 100% для однокомпрессорных чиллеров и в диапазоне от 8 ло 100% для двухкомпрессорных чиллеров.
- Плавный пуск чиллера с минимальным пусковым током увеличивает срок службы электродвигателя
- Более точное поддержание температуры хладоносителя по сравнению с неинверторными компрессорами
- Высокая энергоэффективность и более низкое электропотребление по сравнению с винтовыми компрессорами без инверторного привода при частичных тепловых нагрузках.
- Высокая надежность и длительный ресурс работы узлов и компонентов.
- Низкий уровень шума
- Ремонтопригодность
- Регулирование производительности сразу двумя способами обеспечивает более высокую точность регулирования высокую энергоэффективность.

Алгоритм управления производительностью инверторных компрессоров в чиллерах LESSAR

- **Запуск.** Электродвигатель запускается с низкой частотой вращения вала. Затем золотниковый механизм быстро перемещается в среднее положение, соответствующее 50% производительности.
- Увеличение производительности. Увеличивается частота вращения вала электродвигателя и золотниковый механизм перемещается в положение, соответствующее тепловой нагрузке. Встроенный алгоритм управления анализирует текущие параметры работы чиллера. Производится донастройка положения золотникового механизма, а затем точная настройка частоты вращения вала электродвигателя для максимального соответствия производительности компрессора текущей тепловой нагрузке.
- Снижение производительности. Снижается частота вращения вала электродвигателя и золотниковый механизм перемещается в положение, соответствующее тепловой нагрузке. Встроенный алгоритм управления анализирует текущие параметры работы чиллера. Производится донастройка положения золотникового механизма, а затем точная настройка частоты вращения вала электродвигателя для максимального соответствия производительности компрессора текущей тепловой нагрузке.
- Останов. Снижается частота вращения вала электродвигателя и золотниковый механизм перемещается в положение, соответствующее 15% производительности. Электродвигатель выключается после того, как частота вращения снизится до заданного минимального значения.

Чиллеры с водяным охлаждением конденсатора с винтовыми компрессорами **LUC-SS...CXF-M, LUC-SS...CXF-B**

Среди чиллеров LESSAR с водяным конденсатором представлены серия со средней энергоэффективностью LUC-SS...CXF-M (IPLV до 7,5) и с высокой энергоэффективностью LUC-SS...CXF-B (IPLV до 8,5). Серия LUC-SS...CXF-B включает чиллеры с холодопроизводительностью от 305 до 1640 кВт. Чиллеры данной серии благодаря высокой сезонной энергоэффективности позволяют снизить эксплуатационные расходы — экономить на электроэнергии. Серия LUC-SS...CXF-M отличается более широким диапазоном холодопроизводительности: от 337 до 2073 кВт, что обуславливает широкий спектр применения: от бизнес-центров и офисных зданий до крупных административно-бытовых зданий, спортивных сооружений и торгово-развлекательных комплексов.

В чиллерах LESSAR данных модельных рядов используются двухвинтовые полугерметичные компрессоры Bitzer или Hanbell (в зависимости от модели чиллера).

Компания **Hanbell Precise Machinery Co. Ltd.** была основана 29 апреля 1994 года. Hanbell имеет две производственные площадки в Тайване и одну производственную площадку в Шанхае. Центр исследований и разработок (R&D) Hanbell расположен в Тайване. Специалисты завода придерживаются политики постоянного улучшения качества и внедрения новых технологий. Открытие производства в Шанхае было вызвано необходимостью удовлетворить постоянно растущий спрос на продукцию Hanbell. В настоящее время в Шанхае расположено не только производство, но и отделение центра исследований и разработок. На сегодняшний день Hanbell является одним из крупнейших мировых производителей компрессоров и всегда ориентирован на новые технологии и инновации.

Винты производятся на высокоточных роторных станках для минимизации вибраций и трения винтов в процессе эксплуатации винтового компрессора. Тщательный контроль в процессе изготовления винтовой пары обеспечивает надежную работу компрессора в течение всего срока службы. Компрессоры Hanbell оснащены высококачественными осевыми и радиальными подшипниками с длительным сроком службы. Корпус компрессора с двойными стенками обеспечивает снижение уровня шума. Энергетическая эффективность компрессоров обеспечивается благодаря высокой объемной производительности и минимальным зазорам между винтами, а также благодаря точному поддержанию отношения давления нагнетания к давлению всасывания без пережатия и недожатия хладагента.

Профили винтов компрессоров **Bitzer** оптимизированы и запатентованы в европейском и американском патентных ведомствах. Винтовая пара имеет соотношение 5:6 по числу зубьев на ведущем и ведомом роторах соответственно. Роторы изготовлены на высокоточном станке с числовым программным управлением для минимизации вибраций и трения винтов в процессе эксплуатации компрессора. Тщательный контроль в процессе изготовления винтовой пары обеспечивает надежную работу компрессора в течение всего срока службы.

Винтовой компрессор оснащен высокоэффективным встроенным маслоотделителем, который выгодно отличается компактностью и меньшей массой по сравнению с внешними маслоотделителями других производителей. Подача масла в винтовой компрессор на смазку подшипников и винтовой пары осуществляется благодаря разности давлений нагнетания и всасывания внутри компрессора, поэтому отсутствует необходимость в дополнительном масляном насосе и не требуется сложная система циркуляции масла, что повышает надежность работы компрессора.

Чиллеры LUC-VSA(D)W...CXF

с водяным охлаждением конденсатора с инверторными винтовыми компрессорами

Охлаждение

R134a

Хладагент R134a

Инверторный двухвинтовой компрессор

Чиллеры LESSAR серии LUC-VSA(D)W...CXF благодаря инверторному регулированию холодопроизводительности обладают рядом преимуществ: увеличенный срок службы электродвигателя компрессора, точное поддержание температуры хладоносителя, высокая сезонная энергоэффективность, низкий уровень шума.

Корпус

К обечайкам испарителя и конденсатора приварены стальные прямоугольные несущие плиты, к которым прикреплены металлические лапы. Все металлические поверхности корпуса загрунтованы и окрашены.

Компрессор

Полугерметичный винтовой компрессор Bitzer с инверторным приводом обеспечивает плавное регулирование производительности в диапазоне от 15 до 100%. Компрессор оснащен встроенным маслоотделителем и встроенным обратным клапаном на нагнетании.

Фреоновый контур

Включает в себя электронный расширительный вентиль, дроссельную диафрагму, реле высокого и низкого давления, предохранительный клапан на испарителе и конденсаторе, манометры низкого/высокого давления, фильтр-осушитель, запорный вентиль.

Система удаления масла из испарителя

Включает в себя масляный фильтр, инжектор, смотровой глазок, запорные вентили.

Водяной теплообменник

Кожухотрубный испаритель затопленного типа покрыт тепловой изоляцией. Испаритель оснащен съемными крышками, что позволяет производить техническое обслуживание. В испаритель встроен каплеуловитель для предотвращения уноса капель жидкого хладагента в компрессор, что повышает надежность чиллера. Патрубки входа и выхода хладоносителя оснащены соединениями типа Victaulic.

Конденсатор

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи. В конденсатор встроен дополнительный маслоотделитель. Соединения типа Victaulic на входе/выходе охлаждающей воды из конденсатора.

Блок управления

Блок управления состоит из щита, который укомплектован контакторами, пускозащитными электрическими компонентами.

Плата управления

Предназначена для автоматического управления чиллером, имеет функцию диагностики неисправностей и поддерживает протокол связи ModBus RTU, совместимый с BMS. Опционально предлагается возможность мониторинга и управления по протоколу связи BACnet.

Панель управления

Панель управления чиллера оснащена LCD-дисплеем с сенсорным управлением.

Диапазон работы

- Рабочий диапазон температуры охлаждающей воды на выходе из конденсатора от +22 до +45 °C.
- Рабочий диапазон температуры хладоносителя на выходе из испарителя от +5 до +15 °C.
- Разность температур хладоносителя на входе и выходе от 4 до 8 °C

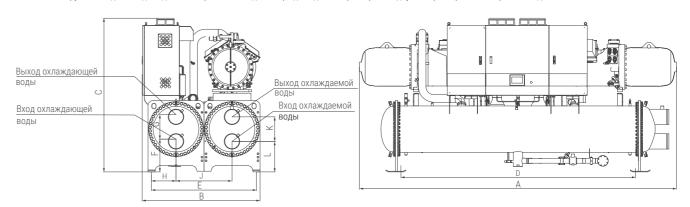
Опции

- Виброопоры пружинные.
- Панель дистанционного управления.
- Плата сетевого протокола BACnet IP, BACnet MS/TP.
- Исполнение чиллера с расширенным диапазоном температуры охлаждающей жидкости на выходе из конденсатора (до +55 °C).

Технические характеристики _

Чиллер LUC-VSCXF		AW420	AW490	AW560	AW670	AW720	AW840	DW890	DW980	DW1050	DW1100	DW1210	DW1340	DW1440	DW1510	DW1560	DW166
Холодопроизводительность	кВт	418,2	488,5	558,3	667,2	716,3	831,4	886,8	974,9	1043	1095	1204	1331	1438	1509	1557	1656
Потребляемая мощность	кВт	74,5	84,7	92,6	111,1	119,5	138,7	147	163	174,1	180,2	200,5	220,1	239,5	252	257,7	276,6
Хладагент									R1:	34a							
Заправка хладагента	КГ	110	120	140	150	160	170	240	245	250	260	265	280	285	290	300	310
Расход хладоносителя в испарителе	М3/Ч	64,6	75,5	86,3	103,1	110,7	128,5	137,1	150,6	161	169	186	205,6	222	233	241	256
Гидравлическое сопротивление испарителя	кПа	40	39	42	50	41	41	63	65	68	64	80	76	79	76	77	80
Максимальное рабочее давление хладоносителя	МПа								1	,0							
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DM150	DN150	DN150	DN150	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200
Расход охлаждающей жидкости в конденсаторе	м³/ч	81,5	94,9	107,8	128,9	138,4	160,6	171,2	188,4	201,4	211,2	232,5	256,8	277,8	291,5	300,5	320
Гидравлическое сопротивление конденсатора	кПа	51	58	57	61	51	58	38	40	38	42	57	58	62	62	63	68
Максимальное рабочее давление охлаждающей жидкости	МПа								1	,0							
Диаметр патрубков охлаждающей жидкости конденсатора (вход/выход)	MM	DM150	DN150	DN150	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200	DN200
Тип компрессора								Ві	интовой и	нверторні	ый						
Количество компрессоров	ШТ.			1	1							1	2				
Количество фреоновых контуров	ШТ.			1	1							1	2				
Регулирование холодопроизводительности	ШТ.		пла	авное от 1	15% до 10	0 %					ПЛ	авное от	8 % до 10	0%			
Электропитание	ф/В/Гц						3/38	0/50									
Рабочий ток	А	121,8	138,2	151,3	181.5	195,2	226,5	240,2	266,2	284,5	294,4	327,6	359,6	391,2	411,8	421	452
Максимальный рабочий ток	А	154,3	206,1	206,1	228,3	245,8	272,6	382,6	382,6	382,6	456,6	456,6	456,6	500,9	518,4	545,2	545,2
Габаритные размеры и масса																	
Длина	MM	2713	2713	2713	2738	2970	2970	4430	4430	4430	4430	4500	4500	4500	4500	4500	4500
Ширина	MM	1380	1380	1380	1500	1500	1500	1610	1610	1610	1610	1700	1700	1700	1700	1700	1700
Высота	MM	1996	1996	1996	2096	2096	2096	2163	2163	2163	2163	2198	2198	2198	2198	2198	2198
Масса (транспортная)	КГ	2470	2952	3007	3270	3331	3472	4910	4945	4982	5445	5885	5995	6130	6220	6335	6380
Масса (рабочая)	КГ	2620	3112	3177	3490	3571	3722	5280	5335	5392	5865	6375	6515	6680	6800	6915	6980

Примечания


Параметры в таблице указаны при условиях стандарта AHRI 550/590-2018:

- Хладоноситель: вода.
- Охлаждающая жидкость конденсатора: вода
- Температура воды на входе/выходе испарителя 12,22/6,67 °C;
- Температура воды на входе/выходе конденсатора 29,44/34,61 °C.
- Коэффициент загрязнения испарителя 0,0176 м² °С/кВт.
 Коэффициент загрязнения испарителя 0,044 м² °С/кВт.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	G, мм	Н, мм	Ј, мм	К, мм	L, мм
LUC-VSAW420CXF	2713	1380	1996	2050	1100	381	260	250	600	260	381
LUC-VSAW490CXF	2713	1380	1996	2050	1100	381	260	250	600	260	381
LUC-VSAW560CXF	2713	1380	1996	2050	1100	381	260	250	600	260	381
LUC-VSAW670CXF	2738	1500	2096	2050	1300	411	300	300	700	260	406
LUC-VSAW720CXF	2970	1500	2096	2050	1300	411	300	300	700	300	411
LUC-VSAW840CXF	2970	1500	2096	2050	1300	411	300	300	700	300	411
LUC-VSDW890CXF	4430	1610	2163	2850	1400	411	350	325	750	350	411
LUC-VSDW980CXF	4430	1610	2163	2850	1400	411	350	325	750	350	411
LUC-VSDW1050CXF	4430	1610	2163	2850	1400	411	350	325	750	350	411
LUC-VSDW1100CXF	4430	1610	2163	2850	1400	411	350	325	750	350	411
LUC-VSDW1210CXF	4500	1700	2198	3350	1500	436	350	350	800	350	436
LUC-VSDW1340CXF	4500	1700	2198	3350	1500	436	350	350	800	350	436
LUC-VSDW1440CXF	4500	1700	2198	3350	1500	436	350	350	800	350	436
LUC-VSDW1510CXF	4500	1700	2198	3350	1500	436	350	350	800	350	436
LUC-VSDW1560CXF	4500	1700	2198	3350	1500	436	350	350	800	350	436
LUC-VSDW1660CXF	4500	1700	2198	3350	1500	436	350	350	800	350	436

Расположение патрубков входа/выхода воды на испарителе и конденсаторе для однокомпрессорных и двухкомпрессорных чиллеров совпадают.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Чиллеры LUC-SSA(D)W...CXF-B

с водяным охлаждением конденсатора с винтовыми компрессорами

NEW

Охлаждение

R134a

Хладагент R134a

Двухвинтовой компрессор

Чиллеры LESSAR серии LUC-SSA(D)W...CXF-B с водяным охлаждением конденсатора находят широкое применение в проектах холодоснабжения, в которых энергоэффективность является приоритетным фактором при выборе оборудования. Благодаря использованию высоконадежных винтовых компрессоров с плавным регулированием холодопроизводительности от 25% до 100% и испарителя затопленного типа с повышенным коэффициентом теплопередачи эти чиллеры выгодно отличаются своей энергоэффективностью.

Корпус

К обечайкам испарителя и конденсатора приварены стальные прямоугольные несущие плиты, к которым прикреплены металлические лапы. Все металлические поверхности корпуса загрунтованы и окрашены.

Компрессор

Полугерметичный винтовой компрессор Bitzer или Hanbell. Плавное регулирование холодопроизводительности компрессора 25–100%. Компрессор оснащен встроенным маслоотделителем и встроенным обратным клапаном на нагнетании.

Фреоновый контур

Включает в себя электронный расширительный вентиль, дроссельную диафрагму, реле высокого и низкого давления, предохранительный клапан на испарителе и конденсаторе, манометры низкого/высокого давления, фильтр-осушитель, запорный вентиль.

Система удаления масла из испарителя

Включает в себя масляный фильтр, инжектор, смотровой глазок.

Водяной теплообменник

Кожухотрубный испаритель затопленного типа покрыт тепловой изоляцией. Испаритель оснащен съемными крышками, что позволяет производить техническое обслуживание. В испаритель встроен каплеуловитель для предотвращения уноса капель жидкого хладагента в компрессор, что повышает надежность чиллера. Патрубки входа и выхода хладоносителя оснащены соединениями типа Victaulic.

Конденсато

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи. В конденсатор встроен дополнительный маслоотделитель. Соединения типа Victaulic на входе/выходе охлаждающей воды из конденсатора.

Блок управления

Блок управления состоит из щита, который укомплектован контакторами, пускозащитными электрическими компонентами.

Плата управления

Предназначена для автоматического управления чиллером, имеет функцию диагностики неисправностей и поддерживает протокол связи ModBus RTU, совместимый с BMS. Опционально предлагается возможность мониторинга и управления по протоколу связи BACnet.

Панель управления

Панель управления чиллера оснащена LCD-дисплеем с сенсорным управлением.

Диапазон работы

- Рабочий диапазон температуры охлаждающей воды на выходе конденсатора от +22 до +42 °C.
- Рабочий диапазон температуры хладоносителя на выходе из испарителя от +5 до +15 °C.
- Разность температур хладоносителя на входе и выходе от +4 до +8 °C.

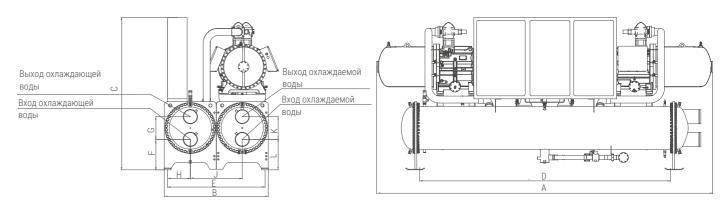
Опции

- Виброопоры пружинные.
- Панель дистанционного управления.
- Плата сетевого протокола BACnet IP, BACnet MS/TP.
- Исполнение чиллера с расширенным диапазоном температуры охлаждающей жидкости на выходе из конденсатора (до +55 °C).

Технические характеристики —

Чиллер LUC-SSCXF-B		AW310	AW330	AW380	AW460	AW530	AW600	AW690	AW760	AW820	DW790	DW860	DW900	DW1050	DW1210	DW1370	DW1500	DW164
Холодопроизводительность	кВт	305,4	330,7	376,0	458,2	523,6	601,6	683,6	752,0	820,4	789,5	854,8	899,4	1046	1206	1366	1503	1640
Потребляемая мощность	кВт	52,3	57,2	65,1	79,4	87,7	100,6	114,2	125,2	137,0	132,1	142,9	150,5	174,6	201,3	228,5	248,1	271,3
Хладагент										R134a								
Заправка хладагента	КГ	78	82	90	100	120	130	140	155	170	210	230	230	245	282	300	330	350
Расход хладоносителя в испарителе	М3/Ч	47,2	51,1	58,1	70,8	80,9	93,0	105,6	116,2	126,8	122,0	132,1	139,0	161,6	186,4	211,0	232,2	253,4
Гидравлическое сопротивление испарителя	кПа	33	30	38	46	39	50	56	49	57	57	58	63	66	79	79	75	78
Максимальное рабочее давление хладоносителя	МПа								1,	,0								
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM					DN150								DN:	200			
Расход охлаждающей жидкости в конденсаторе	М3/Ч	59,2	64,2	73,0	89,0	101,2	116,3	132,1	145,2	158,5	152,6	165,2	178,3	202,1	233,1	264,0	290,0	316,5
Гидравлическое сопротивление конденсатора	кПа	44	44	44	57	57	57	56	56	57	29	31	34	34	50	54	54	58
Максимальное рабочее давление охлаждающей жидкости	МПа	1,0																
Диаметр патрубков охлаждающей жидкости конденсатора (вход/выход)	MM		DN150										DN200					
Тип компрессора									Винт	овой								
Количество компрессоров	ШТ.					1								2	2			
Количество фреоновых контуров	ШТ.					1								2)			
Регулирование холодопроизводительности	ШТ.				плавное	е от 25%,	до 100%						плав	ное от 12	2,5% до 1	00%		
Электропитание	ф/В/Гц									3/380/50								
Рабочий ток	Α	90,3	98,8	112,5	137,1	151,3	173,6	197,2	216,2	236,6	228,2	246,7	259,7	301,6	347,5	394,6	428,2	468,4
Максимальный рабочий ток	А	136,6	154,6	176,9	208,0	235,0	260,0	301,0	335,0	369,0	362,6	389,6	411,9	470,0	536,0	602,0	670,0	738,0
Габаритные размеры и масса																		
Длина	MM	2710	2710	2710	2710	2710	2710	2750	2750	2750	4250	4250	4250	4410	4530	4530	4750	4750
Ширина	MM	1200	1200	1200	1200	1200	1200	1400	1400	1400	1500	1500	1500	1500	1600	1600	1600	1600
Высота	MM	1740	1790	1790	1813	1813	1942	1940	2090	2090	2180	2230	2230	2230	2290	2290	2340	2340
Масса (транспортная)	КГ	2148	2182	2210	2675	2750	2540	3130	3320	3375	4600	4700	4710	5225	5787	5975	6360	6480
Масса (рабочая)	КГ	2280	2321	2354	2825	2917	2714	3345	3553	3614	4955	5069	5079	5632	6276	6502	6935	7078

Примечания


Параметры в таблице указаны при условиях стандарта АНRI 550/590-2018:

- Хладоноситель: вода.
- Охлаждающая жидкость конденсатора: вода
- Температура воды на входе/выходе испарителя 12,22/6,67 °C;
- Температура воды на входе/выходе конденсатора 29,44/34,61 °C.
- Коэффициент загрязнения испарителя 0,0176 м² °С/кВт.
- Коэффициент загрязнения испарителя 0,044 м² °С/кВт.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	G, мм	Н, мм	Ј, мм	К, мм	L, мм
LUC-SSAW310CXF-B	2710	1200	1740	2050	1100	411	260	250	600	260	411
LUC-SSAW330CXF-B	2710	1200	1790	2050	1100	411	260	250	600	260	411
LUC-SSAW380CXF-B	2710	1200	1790	2050	1100	411	260	250	600	260	411
LUC-SSAW460CXF-B	2710	1200	1813	2050	1100	411	260	250	600	260	411
LUC-SSAW530CXF-B	2710	1200	1813	2050	1100	411	260	250	600	260	411
LUC-SSAW600CXF-B	2710	1200	1942	2050	1100	411	260	250	600	260	411
LUC-SSAW690CXF-B	2750	1400	1940	2050	1300	441	300	300	700	260	436
LUC-SSAW760CXF-B	2750	1400	2090	2050	1300	441	300	300	700	260	436
LUC-SSAW820CXF-B	2750	1400	2090	2050	1300	441	300	300	700	260	436
LUC-SSDW790CXF-B	4250	1500	2180	2850	1400	443	350	325	750	350	443
LUC-SSDW860CXF-B	4250	1500	2230	2850	1400	443	350	325	750	350	443
LUC-SSDW900CXF-B	4250	1500	2230	2850	1400	443	350	325	750	350	443
LUC-SSDW1050CXF-B	4410	1500	2230	2850	1400	443	350	325	750	350	443
LUC-SSDW1210CXF-B	4530	1600	2290	3350	1500	468	350	350	800	350	468
LUC-SSDW1370CXF-B	4530	1600	2290	3350	1500	468	350	350	800	350	468
LUC-SSDW1500CXF-B	4750	1600	2340	3350	1500	468	350	350	800	350	468
LUC-SSDW1640CXF-B	4750	1600	2340	3350	1500	468	350	350	800	350	468

Расположение патрубков входа/выхода воды на испарителе и конденсаторе для однокомпрессорных и двухкомпрессорных чиллеров совпадают.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Чиллеры LUC-SSA(D)W...CXF-M

с водяным охлаждением конденсатора с винтовыми компрессорами

Охлаждение

R134a

Хладагент R134a

Двухвинтовой компрессор

Cepuя LUC-SS...CXF-M отличается широким диапазоном холодопроизводительности: от 337 до 2073 кВт, что обуславливает широкий спектр применения: от бизнес-центров и офисных зданий до крупных административно-бытовых зданий, спортивных сооружений и торгово-развлекательных комплексов.

Корпус

К обечайкам испарителя и конденсатора приварены стальные прямоугольные несущие плиты, к которым прикреплены металлические лапы. Все металлические поверхности корпуса загрунтованы и окрашены.

Компрессор

Полугерметичный винтовой компрессор Bitzer или Hanbell. Плавное регулирование холодопроизводительности компрессора 25–100%. Компрессор оснащен встроенным маслоотделителем и встроенным обратным клапаном на нагнетании.

Фреоновый контур

Включает в себя электронный расширительный вентиль, дроссельную диафрагму, реле высокого и низкого давления, предохранительный клапан на испарителе и конденсаторе, манометры низкого/высокого давления, фильтр-осушитель, запорный вентиль.

Система удаления масла из испарителя

Включает в себя масляный фильтр, инжектор, смотровой глазок, запорные вентили.

Водяной теплообменник

Кожухотрубный испаритель затопленного типа покрыт тепловой изоляцией. Испаритель оснащен съемными крышками, что позволяет производить техническое обслуживание. В испаритель встроен каплеуловитель для предотвращения уноса капель жидкого хладагента в компрессор, что повышает надежность чиллера. Патрубки входа и выхода хладоносителя оснащены соединениями типа Victaulic.

Конденсатор

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи. В конденсатор встроен дополнительный маслоотделитель. Соединения типа Victaulic на входе/выходе охлаждающей воды из конденсатора.

Блок управления

Блок управления состоит из щита, который укомплектован контакторами, пускозащитными электрическими компонентами.

Плата управления

Предназначена для автоматического управления чиллером, имеет функцию диагностики неисправностей и поддерживает протокол связи ModBus RTU, совместимый с BMS. Опционально предлагается возможность мониторинга и управления по протоколу связи BACnet.

Панель управления

Панель управления чиллера оснащена LCD-дисплеем с сенсорным управлением.

Диапазон работы

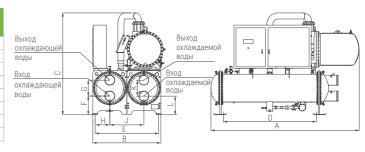
- Рабочий диапазон температуры охлаждающей воды на выходе конденсатора от +22 до +42 °C.
- Рабочий диапазон температуры хладоносителя на выходе из испарителя от +5 до +15 °C.
- Разность температур хладоносителя на входе и выходе от +4 до +8 °C.

Опции

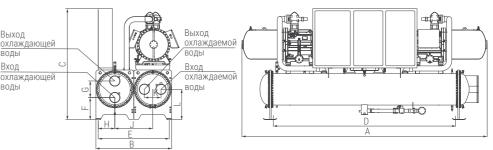
- Виброопоры пружинные.
- Панель дистанционного управления.
- Плата сетевого протокола BACnet IP, BACnet MS/TP.
- Исполнение чиллера с расширенным диапазоном температуры охлаждающей жидкости на выходе из конденсатора (до +55 °C).

Технические характеристики _

Чиллер LUC-SSCXF-M		AW340	AW440	AW540	AW630	AW720	AW800	AW890	AW1050	DW1190	DW1290	DW1400	DW1600	DW1760	DW208
Холодопроизводительность	кВт	337,0	436,3	535,3	627,7	714,1	798,6	882,7	1047,0	1190,0	1289,0	1393,0	1601,0	1760,0	2073,0
Потребляемая мощность	кВт	59,8	76,7	93,6	109,9	126,9	142,3	154,3	185,8	205,3	221,7	242,1	278,6	306,4	362,9
Хладагент								R1:	34a						
Заправка хладагента	КГ	100	110	140	140	150	160	170	245	330	330	340	400	400	520
Расход хладоносителя в испарителе	м³/ч	52,1	67,4	82,7	97,0	110,3	123,4	136,4	161,7	183,8	199,1	215,2	247,4	271,9	320,2
Гидравлическое сопротивление испарителя	кПа	38	43	39	52	56	50	45	50	65	75	64	74	77	80
Максимальное рабочее давление хладоносителя	МПа							1	,0						
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM			DN150							DN200				
Расход охлаждающей жидкости в конденсаторе	м³/ч	65,6	84,9	104,1	122,1	139,2	155,7	171,6	203,9	230,9	250,1	287,7	330,9	363,6	428,6
Гидравлическое сопротивление конденсатора	кПа	53	58	60	63	62	63	65	68	69	80	100	99	102	104
Максимальное рабочее давление охлаждающей жидкости	МПа		1,0												
Диаметр патрубков охлаждающей жидкости конденсатора (вход/выход)	MM	DN150 DN200													
Тип компрессора								Винт	овой						
Количество компрессоров	ШТ.					1							2		
Количество фреоновых контуров	ШТ.					1							2		
Регулирование холодопроизводительности	ШТ.			П	лавное от 2	25% до 100	%				ПЛ	павное от 1	2,5% до 100)%	
Электропитание	ф/В/Гц							3/38	0/50						
Рабочий ток	Α	103,2	132,4	161,6	189,8	219,1	245,6	266,5	320,7	354,4	382,9	418,0	481,0	529,0	626,6
Максимальный рабочий ток	Α	154,6	208,0	235,0	260,0	301,0	369	382,8	396,8	536,0	536,0	602,0	738,0	765,6	793,6
Габаритные размеры и масса															
Длина	MM	2713	2713	2713	2713	2738	2970	2970	3265	4650	4650	4650	5180	5180	5950
Ширина	MM	1200	1200	1200	1200	1400	1400	1400	1500	1500	1500	1500	1600	1600	2000
Высота	MM	1796	1809	1809	1986	1946	2184	2184	2256	2290	2290	2290	2390	2390	2550
Масса (транспортная)	КΓ	2170	2190	2780	2660	3140	3341	3452	4266	6232	6232	6415	7075	7318	9326
Масса (рабочая)	КГ	2300	2340	2940	2830	3360	3581	3702	4576	6872	6872	7125	7865	8158	10 866


Примечания

Параметры в таблице указаны при условиях стандарта AHRI 550/590-2018:


- Хладоноситель: вода.
- Охлаждающая жидкость конденсатора: вода.
- Температура воды на входе/выходе испарителя 12,22/6,67 °C;
- Температура воды на входе/выходе конденсатора 29,44/34,61 °C.
- Коэффициент загрязнения испарителя 0,0176 м² °С/кВт.
 Коэффициент загрязнения испарителя 0,044 м² °С/кВт.

Габаритные размеры -

Модель	A,	В,	C,	D,	E,	F,	G,	Н,	J,	K,	L,
	MM	ММ	ММ	MM	ММ	ММ	MM	MM	MM	MM	ММ
LUC-SSAW340CXF-M	2713	1200	1796	2050	1100	381	260	250	600	260	381
LUC-SSAW440CXF-M	2713	1200	1809	2050	1100	381	260	250	600	260	381
LUC-SSAW540CXF-M	2713	1200	1809	2050	1100	381	260	250	600	260	381
LUC-SSAW630CXF-M	2713	1200	1986	2050	1100	381	260	250	600	260	381
LUC-SSAW720CXF-M	2738	1400	1946	2050	1300	461	260	300	700	260	431
LUC-SSAW800CXF-M	2970	1400	2184	2050	1300	411	300	300	700	300	411
LUC-SSAW890CXF-M	2970	1400	2184	2050	1300	411	300	300	700	300	411
LUC-SSAW1050CXF-M	3265	1500	2256	2050	1400	413	300	325	750	350	413

Модель	A,	В,	C,	D,	E,	F,				K,	L,
	MM	ММ	ММ	ММ	ММ	ММ	ММ	MM	MM	ММ	MM
LUC-SSDW1190CXF-M	4650	1500	2290	3850	1400	413	300	325	750	350	588
LUC-SSDW1290CXF-M	4650	1500	2290	3850	1400	443	350	325	750	350	588
LUC-SSDW1400CXF-M	4650	1500	2290	3850	1400	443	350	325	750	350	588
LUC-SSDW1600CXF-M	5180	1600	2390	3850	1500	436	350	350	800	350	611
LUC-SSDW1760CXF-M	5180	1600	2390	3850	1500	436	350	350	800	350	611
LUC-SSDW2080CXF-M	5950	2000	2550	3780	1800	498	470	400	1000	400	733

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления

Чиллеры

с водяным охлаждением конденсатора с центробежными компрессорами двухступенчатого сжатия

щениях большой площади. Эти высокоэффективные холодильные машины способны обеспечить комфортные условия в зданиях с помещениями большого объема: в аэропортах, спортивных и выставочных комплексах, торговых залах. В чиллерах LESSAR применяются двухступенчатые центробежные компрессоры нового поколения с повышенной энергетической эффективностью, которые пришли на смену одноступенчатой технологии сжатия. В зависимости от количества компрессоров оборудование данного типа делится на однокомпрессорное и двухкомпрессорное (эквивалентно двум чил-

Компрессор

В новом модельном ряду центробежных чиллеров LESSAR с водяным охлаждением конденсатора используются двухступенчатые полугерметичные компрессоры с экономайзером. Двухступенчатое сжатие паров хладагента с экономайзером позволило достичь существенного повышения энергетической эффективности чиллера до 7,1, что является высококонкурентным преимуществом и позволяет дополнительно снизить эксплуатационные расходы, связанные с потреблением электроэнергии в данном типе центробежных чиллеров. В полугерметичных центробежных компрессорах двухступенчатого сжатия отсутствует возможность утечки хладагента через торцевое сальниковое уплотнение ротора компрессора, которая существует у компрессоров с сальниковым уплотнением ротора.

Электромотор

Двухполюсный электромотор компрессора со встроенной тепловой защитой обмоток охлаждается парами хладагента и не требует создания дополнительной системы кондиционирования в помещении компрессорной. Такая конструкция электромотора рассчитана на длительный срок службы и обладает меньшим уровнем звукового давления по сравнению с электродвигателями, которые охлаждаются потоком воздуха. Для снижения рабочих и пусковых токов устанавливаются электромоторы на 6000 и 10 000 В.

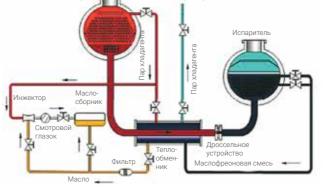
Регулирование холодопроизводительности –

Регулирование холодопроизводительности центробежного компрессора осуществляется плавно в диапазоне от 10 до 100%.

Оптимальное регулирование холодопроизводительности достигается сочетанием углов поворота лопаток входного регулирующего аппарата и лопаток поворотного лопаточного диффузора, обеспечивая наибольшее значение КПД ступени центробежного компрессора.

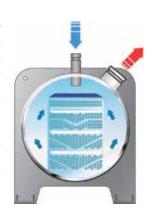
Возможность регулирования холодопроизводительности компрессора в зависимости от тепловой нагрузки на чиллер значительно сокращает эксплуатационные расходы.

Рабочее колесо


Закрытое рабочее колесо с оптимизированным профилем лопаток изготавливается из высокопрочного алюминиевого сплава на высокоточных станках с числовым программным управлением. При оптимизации профиля лопаток рабочего колеса использовались современные методы газодинамического моделирования и САПР, что позволило минимизировать массу и напряжение в лопатках рабочего колеса, повысив ресурс работы. Каждое рабочее колесо проходит динамическую балансировку и тестирование на превышение частоты вращения.

Экономайзер -

Экономайзер увеличивает холодопроизводительность чиллера на 4-6% и является необходимым элементом реализованного двухступенчатого холодильного цикла.



Система возврата масла в компрессор —

В центробежных чиллерах из испарителя с пленочным кипением необходимо возвращать масло, унесенное из компрессора. Для возврата масла в компрессор из испарителя разработана и запатентована система масловозврата, состоящая из масляного фильтра, теплообменника, смотрового глазка, маслосборника и инжектора. Маслофреоновая смесь поступает из испарителя в теплообменник для выпаривания масла из фреона, которое происходит за счет подвода теплоты от жидкого хладагента, поступающего из конденсатора. В инжекторе происходит подсасывание масла из теплообменника, которое направляется в маслосборник для подпитки контура подачи масла в компрессор.

Испаритель с пленочным кипением

Новая запатентованная конструкция кожухотрубных испарителей с пленочным кипением хладагента позволяет снизить заправку испарителя на 40% по сравнению с классическим кожухотрубным испарителем затопленного типа. Основным отличием кожухотрубного испарителя с пленочным кипением хладагента является особая конфигурация трубного пучка, состоящего из медных труб, который орошается ниспадающим потоком хладагента в виде пленки. Кожух данного испарителя изготовлен из углеродистой стали, трубы теплообменной поверхности выполнены из меди с внутренним рифлением и насечками снаружи для увеличения коэффициента теплоотдачи при кипении фреона, а также со стороны хладоносителя. Концы труб развальцованы в стальных трубных досках. Специальные двойные канавки в отверстиях трубной решетки повышают надежность вальцовки, увеличивают срок службы испарителя и препятствуют утечке хладагента. В испаритель встроен элиминатор сетчатого типа для предотвращения уноса капель жидкого хладагента в компрессор.

Конденсатор

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи.

Специальный распределитель потока газообразного фреона равномерно распределяет его по всей теплообменной поверхности конденсатора. В нижней части конденсатора расположен контур переохлаждения жидкого фреона для повышения энергетической эффективности чиллера.

Интеллектуальное управление -

Управление чиллером осуществляется микропроцессорной платой с функцией диагностики неисправностей, которая обеспечивает защиту от аварийных режимов работы и предупреждение по более чем 30 параметрам, а также поддерживает управление чиллером по протоколу Modbus. Панель управления чиллера оснащена цветным LCD-дисплеем с диагональю экрана 9,7 с сенсорным управлением.

Защитные устройства

В чиллере предусмотрен высокий уровень автоматической защиты от высокого/низкого давления хладагента, отсутствия протока воды, перегрузки электродвигателя компрессора и масляного насоса, пропадания фазы. Контролируется правильность чередования фаз, перекос фаз, защита от высокого и низкого напряжения, также существует защита по температуре и разности давления масла. Испаритель и конденсатор оснащены предохранительным клапаном хладагента.

Маркировка чиллеров **LESSAR**

LUC - C S T W 600 C X M - B

- LUC чиллер торговой марки LESSAR
- Компрессор
- С центробежный
- Тип компрессора
- S полугерметичный
- Количество компрессоров
- Т один двухступенчатый компрессор
- Охлаждение конденсатора
- W водяное
- Типоразмер

Тип электропитания

A — 6000 B / 50 Гц / 3 фазы

В - 10 000 В / 50 Гц / 3 фазы

С - 380 В / 50 Гц / 3 фазы

- X R134a
- Тип испарителя
 - М испаритель с пленочным кипением
- 10 Модификация

Чиллеры LUC-CSTW...CXM-B

с водяным охлаждением конденсатора с центробежными компрессорами двухступенчатого сжатия

Охлаждение

R134a

Хладагент R134a

Центробежный компрессор

Чиллеры LESSAR с центробежными компрессорами двухступенчатого сжатия с экономайзером предоставляют возможность реализовать энергетически более выгодную систему холодоснабжения по сравнению с одноступенчатым циклом охлаждения, а современные технологии, применяемые при конструировании теплообменных аппаратов, позволили снизить металлоемкость и еще больше сократить заправку хладагента в чиллере в результате применения испарителя с пленочным кипением хладагента.

Корпус

К обечайкам испарителя и конденсатора приварены стальные прямоугольные несущие плиты, к которым прикреплены металлические лапы. Все металлические поверхности корпуса загрунтованы и окрашены.

Компрессор

Двухступенчатый полугерметичный центробежный компрессор с двойными стенками корпуса для снижения уровня звукового давления. Плавное регулирование холодопроизводительности от 10 до 100% с помощью входного регулирующего аппарата и подвижных лопаток диффузора. Применяются подшипники скольжения для повышенной надежности и долгого срока службы компрессора.

Электромотор

Электромотор полугерметичного типа присоединен непосредственно к компрессору без соединительной муфты и охлаждается парами хладагента.

Фреоновый контур

Включает в себя дроссельную диафрагму, датчик высокого и низкого давления, предохранительный клапан на испарителе и конденсаторе, манометры низкого/высокого давления, смотровое стекло на испарителе.

Система подачи масла в компрессор

Включает в себя масляный насос, масляный фильтр, запорные вентили, маслоохладитель, маслосборник верхний, маслосборник нижний.

Система удаления масла из испарителя

Включает в себя теплообменник для выпаривания масла, маслосборник, масляный фильтр, инжектор, смотровой глазок, запорные вентили

Водяной теплообменник

Испаритель кожухотрубного типа с пленочным кипением хладагента. Медные трубки выполнены с внутренней и наружной насечкой для увеличения коэффициента теплоотдачи при кипении фреона, а также со стороны хладоносителя. Тепловая изоляция испарителя выполнена из листового вспененного каучука на заводе.

Конденсатор

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи.

Экономайзер

Экономайзер выполнен в виде сосуда со встроенными сетчатыми элиминаторами.

Ьлок управления

Блок управления состоит из щита, который укомплектован контакторами, пускозащитными электрическими компонентами.

Панель управления

Панель управления чиллера оснащена цветным LCD-дисплеем с диагональю экрана 9,7" с сенсорным управлением, микропроцессорной платой управления с поддержкой протокола связи Modbus, совместимого с BMS, обеспечивает оптимальную работу чиллера и осуществляет защиту от аварийных режимов работы и предупреждение по более чем 30 параметрам.

Диапазон работы

- Рабочий диапазон температуры охлаждающей воды на входе в конденсатор от 19 до 32 °C.
- Рабочий диапазон температуры хладоносителя на выходе из испарителя от 5 до 15 °C.

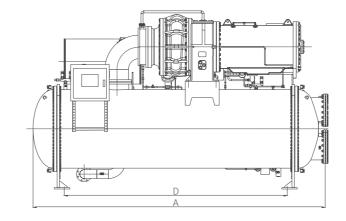
Опции

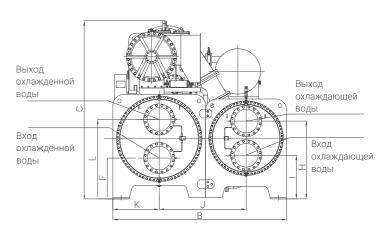
- Групповое управление чиллерами в режиме ведущий/ведомый.
- Соединения типа Victaulic для испарителя и конденсатора.
- Крышки испарителя и конденсатора с увеличенным рабочим давлением воды до 1,6 и 2,0 МПа.
- Крышки испарителя и конденсатора морского исполнения для доступа к теплообменной поверхности без демонтажа трубопроводов.
- Пружинные виброопоры.
- Транспортировка конденсатора отдельно от испарителя с последующей сборкой на месте монтажа.

Технические характеристики

Чиллер LUC-CSTWCXM-B		500	550	600	650	700	750	800	850	900	950	1000	1100	1200	1300
Холодопроизводительность	кВт	1758	1934	2110	2285	2461	2637	2813	2989	3164	3340	3516	3868	4219	4571
Потребляемая мощность	кВт	286,2	314,8	343,6	372,0	401,8	430,0	458,7	486,3	512,3	542,8	570,7	624,4	678,4	731,3
Хладагент								R13	34a						
Заправка хладагента	КГ														
Расход хладоносителя в испарителе	м³/ч	271,6	298,8	325,9	353,1	380,3	407,4	434,6	461,7	488,9	516,1	543,2	597,5	651,9	706,2
Гидравлическое сопротивление испарителя	кПа	35,8	42,5	39,1	44,7	54,0	55,8	55,9	57,6	59,7	58,1	60,0	59,1	58,4	67,7
Максимальное рабочее давление хладоносителя	МПа							1	,0						
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN250	DN250	DN250	DN250	DN300	DN300	DN300	DN300	DN300	DN300	DN300	DN300	DN300	DN300
Расход охлаждающей жидкости в конденсаторе	м³/ч	337,5	371,5	405,4	439,2	473,2	507,0	541,0	574,7	608,4	642,5	676,3	743,5	810,8	877,5
Гидравлическое сопротивление конденсатора	кПа	52,6	62,6	55,4	64,1	66,2	65,4	64,9	66,3	66,2	64,0	68,7	64,3	58,5	64,9
Максимальное рабочее давление охлаждающей жидкости	МПа														
Диаметр патрубков охлаждающей жидкости конденсатора (вход/выход)	MM	DN250	DN250	DN250	DN250	DN300	DN300	DN300	DN300	DN300	DN300	DN300	DN300	DN300	DN300
Тип компрессора								центро	бежный						
Количество компрессоров	ШТ.								1						
Количество фреоновых контуров	ШТ.								1						
Количество ступеней регулирования холодопроизводительности	ШТ.						бесо	ступенча	тое пла	вное					
Электропитание	ф/В/Гц							3/38	0/50						
Габаритные размеры и масса															
Длина	MM	4690	4690	4690	4690	4690	4690	4690	4690	4690	4745	4745	4745	4745	4745
Ширина	MM	1800	1800	1800	1800	1950	1950	1950	1950	1950	2260	2260	2260	2260	2260
Высота	MM	2410	2410	2410	2410	2410	2410	2410	2410	2410	2610	2610	2610	2610	2610
Масса (сухая)	КГ	10 080	10 080	10 240	10 240	11 140	11 270	11 355	11 425	11 494	11 920	12 067	12 235	12 380	12 480
Масса (рабочая)	КГ	12 020	12 020	12 180	12 180	13 159	13 350	13 564	13 712	13 839	14 532	14 773	15 108	15 376	15 500

Примечания


Параметры в таблице указаны при следующих условиях:


- Хладоноситель: вода.
- Охлаждающая жидкость конденсатора: вода.Холодопроизводительность дана при параметрах

- температура воды на входе/выходе испарителя 12,2/6,7 °C;
- температура воды на входе/выходе конденсатора 29,4/34,6 °C.
 Коэффициент загразнения испарителя и конденсатора 0.018 и 0.044 м²⋅°С/к
- Коэффициент загрязнения испарителя и конденсатора 0,018 и 0,044 м² °С/кВт соответственно.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	F , мм	L, мм	К, мм	I, мм	Н, мм	Ј, мм
LUC-CSTW500CXM-B			2410	537.5	982.5	450	537.5	982.5	
LUC-CSTW550CXM-B	4690	1800							900
LUC-CSTW600CXM-B	4090								900
LUC-CSTW650CXM-B									
LUC-CSTW700CXM-B				530	990	500	580	1040	
LUC-CSTW750CXM-B									
LUC-CSTW800CXM-B	4690	1950	2410						975
LUC-CSTW850CXM-B									
LUC-CSTW900CXM-B									
LUC-CSTW950CXM-B									
LUC-CSTW1000CXM-B									
LUC-CSTW1100CXM-B	4745	2260	2610	585	1085	592.5	650	1120	1130
LUC-CSTW1200CXM-B									
LUC-CSTW1300CXM-B									

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Чиллеры LUC-CSTW...BXM-B

с водяным охлаждением конденсатора с центробежными компрессорами двухступенчатого сжатия

Охлаждение

Хладагент R134a

Центробежный компрессор

Чиллеры LESSAR с центробежными компрессорами двухступенчатого сжатия с экономайзером предоставляют возможность реализовать энергетически более выгодную систему холодоснабжения по сравнению с одноступенчатым циклом охлаждения, а современные технологии, применяемые при конструировании теплообменных аппаратов позволили снизить металлоемкость и еще больше сократить заправку хладагента в чиллере в результате применения испарителя с пленочным кипением хладагента.

Корпус

К обечайкам испарителя и конденсатора приварены стальные прямоугольные несущие плиты, к которым прикреплены металлические лапы. Все металлические поверхности корпуса загрунтованы и окрашены.

Компрессор

Двухступенчатый полугерметичный центробежный компрессор с двойными стенками корпуса для снижения уровня звукового давления. Плавное регулирование холодопроизводительности от 10 до 100% с помощью входного регулирующего аппарата и подвижных лопаток диффузора. Применяются подшипники скольжения для повышенной надежности и долгого срока службы компрессора.

Электромотор

Электромотор полугерметичного типа присоединен непосредственно к компрессору без соединительной муфты и охлаждается парами хладагента. Для снижения рабочих и пусковых токов устанавливаются электромоторы на 10 000 В.

Фреоновый контур

Включает в себя дроссельную диафрагму, датчик высокого и низкого давления, предохранительный клапан на испарителе и конденсаторе, манометры низкого/высокого давления, смотровое стекло на испарителе

Система подачи масла в компрессор

Включает в себя масляный насос, масляный фильтр, запорные вентили, маслоохладитель, маслосборник верхний, маслосборник нижний.

Система удаления масла из испарителя

Включает в себя теплообменник для выпаривания масла, маслосборник, масляный фильтр, инжектор, смотровой глазок, запорные вентили.

Водяной теплообменник

Испаритель кожухотрубного типа с пленочным кипением хладагента. Медные трубки выполнены с внутренней и наружной насечкой для увеличения коэффициента теплоотдачи при кипении фреона, а также со стороны хладоносителя. Тепловая изоляция испарителя выполнена из листового вспененного каучука на заводе.

Конденсатор

Теплообменная поверхность кожухотрубного конденсатора состоит из пучка медных труб с внутренним и наружным рифлением, что обеспечивает высокий коэффициент теплопередачи.

Экономайзер

Экономайзер выполнен в виде сосуда со встроенными сетчатыми элиминаторами.

Ьлок управления

Блок управления состоит из щита, который укомплектован контакторами, пускозащитными электрическими компонентами.

Панель управления

Панель управления чиллера оснащена цветным LCD-дисплеем с диагональю экрана 9,7" с сенсорным управлением, микропроцессорной платой управления с поддержкой протокола связи Modbus, совместимого с BMS, обеспечивает оптимальную работу чиллера и осуществляет защиту от аварийных режимов работы и предупреждение по более чем 30 параметрам.

Диапазон работы

- Рабочий диапазон температуры охлаждающей воды на входе в конденсатор от 19 до 32 °C.
- Рабочий диапазон температуры хладоносителя на выходе из испарителя от 5 до 15 °C.

Опци

- Групповое управление чиллерами в режиме ведущий/ведомый.
- Соединения типа Victaulic для испарителя и конденсатора.
- Крышки испарителя и конденсатора с увеличенным рабочим давлением воды до 1,6 и 2,0 МПа.
- Крышки испарителя и конденсатора морского исполнения для доступа к теплообменной поверхности без демонтажа трубопроводов.
- Пружинные виброопоры.
- Транспортировка конденсатора отдельно от испарителя с последующей сборкой на месте монтажа.

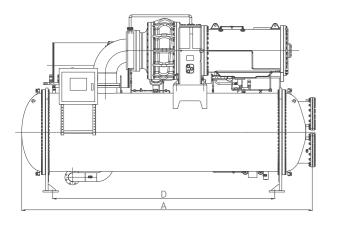
Технические характеристики –

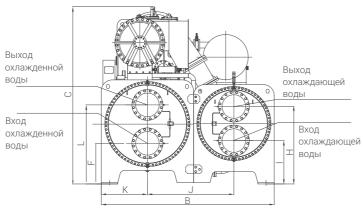
Чиллер LUC-CSTWBXM-B		1400	1500	1600	1700	1800	1900	2000	2100	2200	
Холодопроизводительность	кВт	4922	5274	5626	5977	6329	6680	7032	7384	7735	
Потребляемая мощность	кВт	793,3	848,5	909,4	965,4	1013	1070	1131	1180	1251	
Хладагент						R134a					
Заправка хладагента	КГ										
Расход хладоносителя в испарителе	М ³ /Ч	760,5	814,8	869,1	923,5	977,8	1032	1086	1141	1195	
Гидравлическое сопротивление испарителя	кПа	63,6	60,9	59,3	66,8	70,8	66,0	67,5	67,0	67,1	
Максимальное рабочее давление хладоносителя	МПа					1,0					
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN400	DN400	DN400	DN400	DN400	DN400	DN400	DN400	DN400	
Расход охлаждающей жидкости в конденсаторе	м³/ч	946,5	1014	1082	1150	1217	1284	1353	1419	1489	
Гидравлическое сопротивление конденсатора	кПа	68,0	66,9	64,9	73,2	70,8	67,6	66,6	66,5	67,0	
Максимальное рабочее давление охлаждающей жидкости	МПа		1,0								
Диаметр патрубков охлаждающей жидкости конденсатора (вход/выход)	ММ	DN400	DN400	DN400	DN400	DN400	DN400	DN400	DN400	DN400	
Тип компрессора					L	центробежны	Й				
Количество компрессоров	ШТ.					1					
Количество фреоновых контуров	ШТ.					1					
Количество ступеней регулирования холодопроизводительности	ШТ.				бесст	упенчатое пл	авное				
Электропитание	ф/В/Гц					3/10 000/50					
Габаритные размеры и масса											
Длина	MM	5190	5190	5190	5190	5290	5290	5290	5290	5290	
Ширина	MM	2700	2700	2700	2700	3150	3150	3150	3150	3150	
Высота	MM	3010	3010	3010	3010	3180	3180	3180	3180	3180	
Масса (сухая)	КГ	19 370	20 150	20 850	20 879	23 360	23 590	23 870	24 120	24 350	
Масса (рабочая)	КГ	22 840	23 490	24 210	24 289	27 040	27 490	27 840	28 076	28 310	

Чиллер LUC-CSTWBXM-B		2300	2400	2500	2600	2700	2800	2900	3000		
Холодопроизводительность	кВт	8087	8438	8790	9142	9493	9845	10 196	10 548		
Потребляемая мощность	кВт	1246	1305	1356	1403	1454	1512	1574	1619		
Хладагент		R134a									
Заправка хладагента	КГ	2150	2200	2250	2300	2350	2400	2450	2500		
Расход хладоносителя в испарителе	м3/ч	1249	1304	1358	1412	1467	1521	1575	1630		
Гидравлическое сопротивление испарителя	кПа	75,5	74,8	74,8	74,4	74,2	74,2	73,9	72,9		
Максимальное рабочее давление хладоносителя	МПа				1,	,0					
Диаметр патрубков хладоносителя испарителя (вход/выход)	MM	DN500	DN500	DN500	DN500	DN500	DN500	DN500	DN500		
Расход охлаждающей жидкости в конденсаторе	М3/Ч	1547	1616	1683	1749	1816	1884	1952	2018		
Гидравлическое сопротивление конденсатора	кПа	70,3	71,3	71,9	72,7	72,6	73,7	71,8	72,2		
Максимальное рабочее давление охлаждающей жидкости	МПа	1,0									
Диаметр патрубков охлаждающей жидкости конденсатора (вход/выход)	MM	DN500	DN500	DN500	DN500	DN500	DN500	DN500	DN500		
Тип компрессора					центро	бежный					
Количество компрессоров	ШТ.					1					
Количество фреоновых контуров	ШТ.					1					
Количество ступеней регулирования холодопроизводительности	ШТ.				бесступенча	тое плавное					
Электропитание	ф/В/Гц				3/10 0	000/50					
Габаритные размеры и масса											
Длина	MM	5900	5900	5900	5900	5900	5900	5900	5900		
Ширина	MM	3360	3360	3360	3360	3360	3360	3360	3360		
Высота	MM	3650	3650	3650	3650	3650	3650	3650	3650		
Масса (сухая)	КГ	27 015	27 215	27 415	27 605	27 845	28 035	28 225	28 500		
Масса (рабочая)	КГ	34 210	34 580	34 950	35 310	35 720	36 080	36 485	36 930		

Примечания

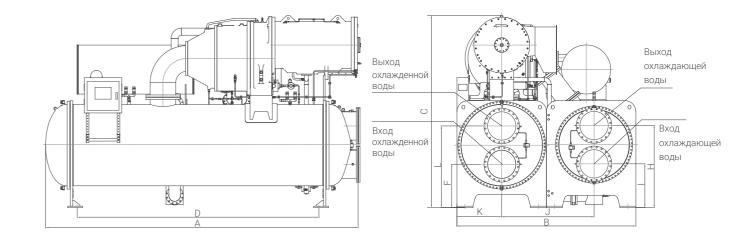
Параметры в таблице указаны при следующих условиях


- Хладоноситель: вода.
- Охлаждающая жидкость конденсатора: вода.Холодопроизводительность дана при параметрах:


- температура воды на входе/выходе испарителя 12,2/6,7°C;
- температура воды на входе/выходе конденсатора 29,4/34,6 °C.
- Коэффициент загрязнения испарителя и конденсатора 0,018 и 0,044 м² °С/кВт соответственно.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

Габаритные размеры


Модель	А, мм	В, мм	С, мм	F , мм	L, мм	К, мм	І, мм	Н, мм	Ј, мм
LUC-CSTW1400BXM-B						725	650	1250	1350
LUC-CSTW1500BXM-B	5190	2700	3010	640	1240				
LUC-CSTW1600BXM-B	0150	2700	3010	040	1240				
LUC-CSTW1700BXM-B									
LUC-CSTW1800BXM-B			3150 3180 740 1440 840 790						
LUC-CSTW1900BXM-B					1410	1575			
LUC-CSTW2000BXM-B	5290	3150		790					
LUC-CSTW2100BXM-B									
LUC-CSTW2200BXM-B									

Габаритные размеры -

Модель	А, мм	В, мм	С, мм	F , мм	L, мм	К, мм	І, мм	Н, мм	Ј, м м
LUC-CSTW2300BXM-B	5900	3360	3650	820	1520	840	830	1530	
LUC-CSTW2400BXM-B									
LUC-CSTW2500BXM-B									
LUC-CSTW2600BXM-B									1735
LUC-CSTW2700BXM-B									
LUC-CSTW2800BXM-B									
LUC-CSTW2900BXM-B									
LUC-CSTW3000BXM-B									

LESSAR PROF ЧИЛЛЕРЫ АБСОРБЦИОННЫЕ

Чиллеры абсорбционные бромистолитиевые

Абсорбционные бромистолитиевые чиллеры LESSAR являются оптимальным техническим решением в слу

СНГ как надежное и качественное оборудование. Данный факт подтверждается наличием реализованных объектов, на которых данное оборудование установлено и успешно функционирует уже много лет, тогда как другие объекты только начинают свой жизненный цикл. Наиболее известные из них: аквапарк «Питерлэнд» города Санкт-Петербург, операционный кассовый офис «Сбербанка» города Астрахань, административное

нальной сфере принято сокращение АБХМ) - это промыш- ленности (химические производства, нефтеперерабатываюленные абсорбционные холодильные машины, предназна- щие комплексы, технологические процессы, в которых при ченные для охлаждения воды и водогликолевых растворов, наличии больших избытков теплоты существует потребкоторые нашли широкое применение в комфортном кон- ность в технологическом охлаждении) и энергетике (систедиционировании (торгово-развлекательные комплексы, мы тригенерации, охлаждения воздуха для газовых турбин).

Абсорбционные бромистолитиевые чиллеры (в профессио- логистические комплексы, бизнес-центры и др.), в промыш-

Преимущества AБXM **LESSAR**

Комплектующие

Высокое качество комплектующих от ведущих мировых производителей.

Конструктивное исполнение и расположение основных элементов позволяет проводить удобный и своевременный сервис АБХМ. Наличие отсечных вакуумплотных вентилей на насосах хладагента и абсорбента исключает попадание воздуха в АБХМ при сервисном обслуживании насосов и предотвращает возникновение коррозии внутренних поверхностей АБХМ.

Автоматическая защита от кристаллизации

Специалистами завода-производителя разработана запатентованная система защиты АБХМ от кристаллизации, позволяющая превентивно избегать кристаллизации раствора LiBr.

Автоматическая защита от разморозки

Предусмотрена трехступенчатая защита от разморозки испарителя:

- реле протока хладоносителя защищает от отсутствия протока охлаждаемой воды через
- дифференциальное реле перепада давления хладоносителя в испарителе дублирует защитную функцию реле протока хладоносителя;
- датчик низкой температуры хладагента в испарителе.

Материал труб теплообменных аппаратов

Возможность исполнения труб теплообменных аппаратов АБХМ из нержавеющих сталей, в том числе с добавлением титана, исходя из индивидуальных требований эксплуатации.

Компактные размеры и более низкий вес по сравнению с конкурентами

Данное преимущество связано с постоянной модернизацией оборудования высококвалифицированным инженерным и конструкторским составами завода-производителя.

Автоматический отвод неконденсирующихся газов

Система продувки автоматически отводит неконденсирующиеся газы, которые образуются в чиллере, в перепускную камеру. Удаление оставшихся газов происходит с помощью вакуумного насоса автоматически.

Регулирование производительности

Предусмотрено плавное регулирование холодопроизводительности АБХМ от 10 до 100% с поддержанием оптимальной производительности при частичной нагрузке.

Комбинированный режим работы

Существует опциональная возможность одновременной выработки холода и тепла в летний период с приоритетом работы на холод, или тепла в зимний период (горячая вода с параметрами 90/70 °C при установке дополнительного теплообменника горячей воды) в АБХМ, работающих на природном или выхлопных газах.

Взрывозащищенное исполнение

Отдельные элементы АБХМ можно изготовить во взрывозащищенном исполнении.

Автоматическое управление

Автоматическое управление работой АБХМ и защита от недопустимых режимов работы построены на микропроцессорном контроллере с цветным сенсорным русифицированным дисплеем. Протокол связи Modbus RTU для подключения к системе АСУТП заказчика.

Производство AБXM LESSAR расположено в Южной Корее, имеет тестовые лаборатории и научно-исследовательский центр. В процессе производства и сборки чиллеров осуществляется тщательный контроль качества. Общая площадь завода 10 500 м².

Контроль качества -

Bce AБXM LESSAR проходят заводские испытания:

- входной контроль материалов и компонентов;
- проверка под давлением;
- испытания на герметичность (включая гелиевый тест на утечку);
- контроль габаритных показателей;
- контроль покраски окрашиваемых поверхностей и тепловой изоляции;
- проверка правильности подключения электрических компонентов щита управления и электропотребителей;
- проверка прочности электрической изоляции;
- тест на соответствие АБХМ заявленным рабочим характеристикам.

Особенности проведения гелиевого теста на утечку -

- В качестве определяемого газа используется гелий, поскольку размер его молекул является наименьшим среди инертных газов
- Масс-спектрометр используется для обнаружения молекул гелия
- Обнаруживаемая утечка: 1·10⁻¹⁰ Па·м³/с

Маркировка абсорбционных чиллеров LESSAR

LUC - HWAR-L 600 HH SP

- 1 LUC чиллер торговой марки LESSAR
- 2 Источник тепловой энергии, число ступеней, режим работы, диапазон холодо-/теплопроизводительности

※ 105-4571 кВт

🤼 176-5274 кВт/116-3476 кВт

🦎 176-5274 кВт/129-3876 кВт

HWAR-L — горячая вода 95/80 °C, одноступенчатый

— горячая вода 90/55 °C, двухступенчатый 2AA — горячая вода 70/60 °C, двухступенчатый

DW природный газ, двухступенчатый

SW водяной пар 0,8 МПа, двухступенчатый

CHP — выхлопные газы 450 °C, двухступенчатый

600 - типоразмер

Энергетическая эффективность

S

- повышенная энергетическая эффективность
- высокая энергетическая эффективность

без указания — стандартная энергетическая эффективность

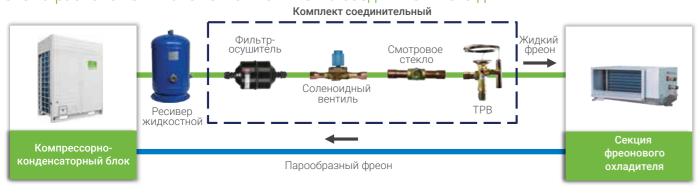
водяной пар 0,15 МПа, одноступенчатый

4 SP — специальное исполнение

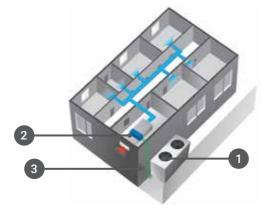
Компрессорно-конденсаторные блоки LUQ-C...A

R410A Хладагент R410A

Спиральный компрессор



Охлаждение


Компрессорно-конденсаторные блоки LESSAR предназначены для подключения к фреоновой секции охлаждения вентиляционного агрегата. Подключение осуществляется двумя линиями хладагента: жидкостной и газовой. Управление компрессорно-конденсаторными блоками (ККБ) обеспечивается автоматикой вентиляционного агрегата. Для включения ККБ необходимо подать управляющий сигнал (~220 В) в соответствии с электрическими схемами в инструкции по установке и эксплуатации ККБ. Двухконтурные ККБ с 2017 года оснащаются системой независимого управления по контурам.

Для всех моделей компрессорно-конденсаторных блоков на соединительном жидкостном трубопроводе перед фреоновым воздухоохладителем необходимо установить дополнительные элементы холодильного контура в строгой последовательности друг за другом: фильтр-осушитель, соленоидный вентиль, смотровое стекло и терморегулирующий вентиль (ТРВ). Также рекомендуется устанавливать ресивер на жидкостной линии сразу за наружным блоком и запорные вентили на входе и выходе фреонового теплообменника секции охлаждения. Подбор и настройка ТРВ должны осуществляться с учетом всех параметров установки и являются важными моментами, определяющими работу компрессорно-конденсаторного блока. Для упрощения подбора рекомендуется использовать комплекты соединительные для компрессорно-конденсаторных блоков серии КС-А.

Схема расположения элементов комплекта соединительного для ККБ

- 1 компрессорно-конденсаторный блок;
- 2 секция фреонового охладителя;
- 3 фреонопровод с комплектом соединительным.

Технические характеристики —

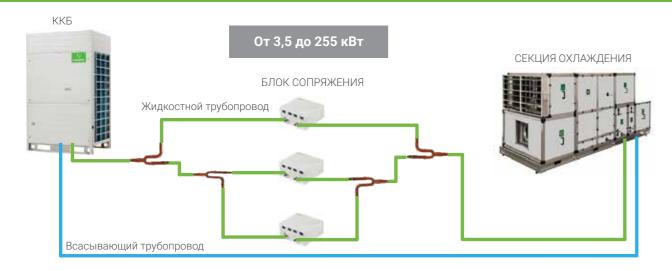
LUQ			C34A	C47A	C54A	C75A	C96A	C118A
Холодопроизводительнос	ТЬ	кВт	10,5	14,0	16,0	22,0	28,0	35,0
Потребляемая мощность		кВт	4,0	5,2	6,2	7,6	9,6	12,6
Рабочий ток		А	6,8	8,8	10,5	12,8	16,2	21,3
Макс. потребляемая мощ	НОСТЬ	кВт	5,3	6,1	8,5	11,7	14,4	17,3
Макс. рабочий ток		Α	10,0	12,0	13,0	19,3	28,5	
Электропитание		ф/В/Гц		3/380/50		3/380/50		
Компрессор				Sanyo		COPELAND DANFO		
Модель компрессора			C-SBN303H8D	C-SBN373H8D	C-SBN453H8D	ZP90KCE-TFD-522	SH140A4ALC	
Количество компрессоро	В	ШТ.	1	1	1	1	1	
Количество фреоновых к		ШТ.	1	1	1	1 1		1
Регулирование производи	ительности	%	100%	100%	100%	100% 100%		100%
Уровень шума		дБ(А)	5	6	57	65	67	69
Хладагент		, , ,					R410A	
Заправка хладагента		КГ	2,5	3,0	3,05	5,4	6,0	7,2
Диаметры фреоновых	Жидкость	MM		Ø9,52		Ø	9,52	Ø12,7
патрубков	Пар	MM		Ø19,0		Ø22,0	Ø25,0	Ø28,6
Габаритные размеры	Без упаковки	MM	1077×967×396	987×11	67×400		1260×916×700	
(Д×В×Ш)	В упаковке	MM	1120×1100×435	1032×13	307×443		1320×1060×730	
Масса нетто/брутто		КГ	85,8/95,6	91,6/102,0	96,6/107,0	171/190	185/202	199/215
Максимальная протяженн ККБ до охладителя	ность трубопровода от	М		30				
Максимальный перепад	ККБ выше охладителя	М		20		30		
ВЫСОТ	ККБ ниже охладителя	М		20		25		
Соединительный комплен	(T		KC-A100	KC-A140	KC-A160	KC-A220	KC-A280	KC-A350
Рабочий диапазон темпер	ратур наружного воздуха	°C		от 17 до 46			от 17 до 52	

LUQ			C150A	C180A	C208A	C238A	C358A		
Холодопроизводительнос	СТЬ	кВт	44,0	53,0	61,0	70,0	105,0		
Потребляемая мощность		кВт	17,6	16,8	19,0	22,0	28,0		
Рабочий ток		А	31,5	30,0	34,0	39,3	50,0		
Макс. потребляемая мощ	НОСТЬ	кВт	26,9	23,7	28,2	31,8	40,7		
Макс. рабочий ток		А	47,9	45,2	51,0	56,5	71,8		
Электропитание		ф/В/Гц							
Компрессор			Hitachi		Dan	foss			
Модель компрессора			E605DH-59D2YG	SH105A4ALC	SH120A4ALC	SH140A4ALC SH184A4A			
Количество компрессоро	В	ШТ.	3	2	2	2 2			
Количество фреоновых к	онтуров	ШТ.	1	2	2	2 2			
Регулирование производи	ительности	%	100%	50%; 100%	50%; 100%	50%; 100% 50%; 100			
Уровень шума		дБ(А)	70	73	76	76 78			
Хладагент									
Заправка хладагента		КГ	10,0	5,5×2	6,2×2	8,5×2	9,0×2		
Диаметры фреоновых	Жидкость	MM	Ø 16		Ø 12	2,7×2			
патрубков	Пар	MM	Ø 32		Ø 2	5×2			
Габаритные размеры	Без упаковки	MM	1250×1615×765	1825×12	245×899	2158×1258×1082	2158×1669×1082		
(Д×B×Ш)	В упаковке	MM	1305×1790×820	1844×12	272×924	2168×1275×1105	2168×1686×1105		
Масса нетто/брутто		КГ	288/308	403/415	413/424	508/523	570/582		
Максимальная протяженн ККБ до охладителя	ность трубопровода от	М			50				
Максимальный перепад	ККБ выше охладителя	М			30				
ВЫСОТ	ККБ ниже охладителя	М			25				
Соединительный комплен	(T		KC-A450	KC-A530	KC-A610	KC-A700	KC-A1050		
Рабочий диапазон темпер		°C	от 17 до 46	от 18 до 46		от 17 до 46			

Примечания

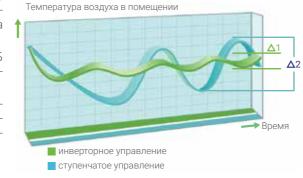
Параметры в таблице указаны при следующих условиях:

- Все данные предоставлены при нормальном атмосферном давлении воздуха.
- Значение холодопроизводительности даны при условиях
 температура кипения хладагента +7 °C;
- температура кипения хладагента + / С,
 температура окружающего воздуха 35 °С по сухому термометру.
- Шумовые данные получены замером на расстоянии 1 м в свободном пространстве.


Компрессорно-конденсаторные блоки LESSAR пользуются большим спросом, как оборудование с оптимальным соотношением цена/качество. Это продукт совместной работы инженеров завода-изготовителя и инженеров LESSAR. После внедрения этого решения на рынке наши инженеры собрали обратную связь от клиентов и внесли доработки в ККБ. Компрессорно-конденсаторные блоки LESSAR совместимы с фреоновыми охладителями любых производителей, но система сама по себе не является решением «под ключ». Она требует более ответственного подхода к подбору оборудования, проектированию и пусконаладке. LESSAR, как клиентоориентированный бренд, проводит политику широкой поддержки для внедрения этого решения. В частности, подготовлена серия обучающих видео по подбору ККБ, проектированию и пусконаладке систем с использованием компрессорно-конденсаторных блоков. Для просмотра видео отсканируйте QR-код.

Изготовитель оборудования оставляет за собой право вносить изменения в конструкцию, внешний вид и технические характеристики без предварительного уведомления.

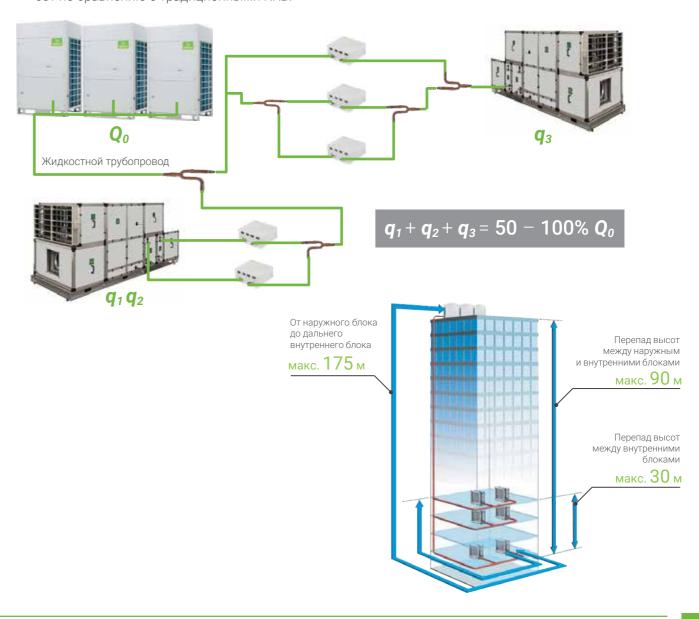
Инверторные компрессорно-конденсаторные блоки **LUQ-E...AUA2(4)-H(V)**



Инверторные компрессорно-конденсаторные блоки LESSAR серии LUQ-E...AUA2(4)-H(V) предназначены для подключения к фреоновым охладителям вентиляционных агрегатов с помощью блоков сопряжения LZ-AHU...VA2. Модельный ряд включает в себя индивидуальные блоки с горизонтальным воздушным потоком холодопроизводительностью от 3,5 до 28 кВт, а также модульные ККБ с вертикальным воздушным потоком холодопроизводительностью от 22,4 до 85 кВт. Модульные ККБ могут быть объединены в систему до 3 модулей. При этом блоки сопряжения LZ-AHU...VA2 (с холодопроизводительностью 9, 20, 36, 56, 112, 170 кВт) могут объединяться в группу до 4 блоков для работы на один фреоновый контур. Таким образом, холодопроизводительность подключаемого фреонового охладителя может составлять от 3,5 до 255 кВт.

Преимущества инверторного регулирования производительности компрессорно-конденсаторных блоков:

- В отличие от ККБ постоянной производительности, инверторные агрегаты позволяют более точно поддерживать температуру воздуха в кондиционируемом помещении, что проиллюстрировано на рисунке справа.
- Особенно актуальным является использование инверторных ККБ на объектах, где тепловая нагрузка значительно меняется. Традиционный ККБ не справится с такой задачей.
- Плавное регулирование производительности обеспечивает высокий сезонный коэффициент энергетической эффективности благодаря оптимальной работе на частичной загрузке, что в итоге выражается в экономии электроэнергии.
- Низкие пусковые токи увеличивают срок службы компрессоров.



Зачастую возникают сложности с подбором ККБ постоянной производительности:

- Нет возможности подобрать ККБ с нужной холодопроизводительностью. Для стабильной работы системы необходимо, чтобы как расчетная, так и минимальная холодопроизводительность фреонового охладителя не отличались от производительности ККБ (минимальной ступени регулирования производительности ККБ) более, чем на 10%.
- Число фреоновых контуров ККБ и фреонового охладителя не совпадает. Если фреоновый охладитель имеет большее число контуров, то потребуется разработка специальной фреоновой обвязки для подключения ККБ с меньшим числом контуров. Если у ККБ больше контуров, чем у фреонового охладителя, такая система не может быть работоспособна, поскольку не предусмотрено масловыравнивающей линии между контурами ККБ.
- Большая протяженность фреонопроводов и перепад высот между ККБ и фреоновым охладителем. Традиционные ККБ имеют значительные ограничения по этим параметрам в связи с трудностями возврата масла в компрессор и падением холодопроизводительности.

Выходом из сложившейся ситуации в описанных выше случаях является выбор инверторного компрессорноконденсаторного блока.

- Возможно подключение фреонового охладителя с холодопроизводительностью 50-100% от холодопроизводительности ККБ. Возможно объединение до трех ККБ в модульную систему. Возможно объединение до 4 блоков сопряжения для подключения к одному контуру фреонового охладителя.
- Возможно подключение нескольких одноконтурных или многоконтурных фреоновых охладителей к одному инверторному ККБ или к модульной системе ККБ.
- Благодаря эффективной системе возврата масла и использованию электронных расширительных вентилей инверторные ККБ имеют значительно большие допустимые протяженности фреонопроводов и перепады высот по сравнению с традиционными ККБ.

Блоки сопряжения LZ-AHU...VA2 включают в себя: плату управления, электронный расширительный вентиль (ЭРВ), датчики температуры и проводной пульт управления LZ-UVPW.

Использование электронного расширительного вентиля вместо механического ТРВ предоставляет ряд преимуществ:

- Более точное поддержание температуры охлаждаемого воздуха.
- Быстрая реакция на изменения тепловой нагрузки и широкий диапазон регулирования производительности.
- Более высокая протяженность трасс фреонопроводов и перепад высот между ККБ и фреоновым охладителем.
- Нет необходимости в ручной настройке расхода и перегрева хладагента.

Блоки сопряжения LZ-AHU...VA2 предоставляют следующие возможности:

- Управление внешним сигналом 0-10 В для регулирования производительности системы или изменения уставки температуры воздуха.
- Управление по температуре воздуха на входе в фреоновый охладитель.
- Управление по температуре воздуха на выходе фреонового охладителя.

Блок сопряжения LZ	-AHU		090VA2-1	200VA2-1	090VA2	200VA2	360VA2	560VA2	1120VA2*	1700VA2*		
Диапазон холодопроизв	одительности	кВт	2,2-9,0	9,0-20,0	2,2-9,0	9,0-20,0	20,0-36,0	36,0-56,0	56,0-112,0	112,0-170,0		
Диаметры фреоновых	Вход	ММ	Ø9,53	Ø9,53	Ø9,53	Ø9,53	Ø12,7		Ø15,9			
патрубков	Выход	MM	Ø9,53	Ø9,53	Ø9,53	Ø9,53	Ø12,7		Ø15,9			
Совместимые ККБ			LUQ-E35-1	55AUA2-H		LUQ-E	200-280AUA4-H,	LUQ-E224-850A	LUQ-E224-850AUA4-V			
Степень электрозащить	I		IP20	IP20	IP20	IP20	IP20	IP20	IP20	IP20		
Габаритные размеры		ММ	393×341×125					648×4	01×160			
Габаритные размеры в у	/паковке	ММ	490×440×205 730×230×4						30×480			
Масса нетто/брутто		КГ	5,6/8,6				5,9/8,8	6,0/8,9	6,0/8,9 12,0/16,0 14,0/1			

Примечание

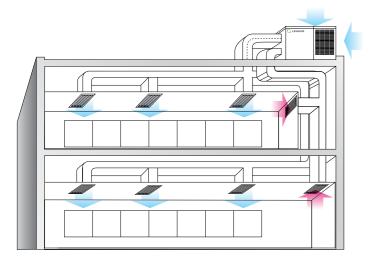
Технические характеристики –

LUQ-E			35AUA2-H	53AUA2-H	62AUA2-H	80AUA2-H	100AUA2-H	120AUA2-H	140AUA2-H	155AUA2-H		
Холодопроизводительность ¹		КВТ 3,5 КВТ 0,94 3,72 ф/В/Гц ШТ. 1 ШТ. 1 ДБ(A) 53 КГ 1,45 ММ Ø6 ММ Ø1 ММ 795		5,3	6,2	8	10	12,3	14	15,5		
Потребляемая мощность 1		кВт	0,94	1,47	1,85	2,1	2,66	3,39	3,97	4,87		
EER1			3,72	3,61	3,35	3,81	3,76	3,63	3,53	3,18		
Электропитание		ф/В/Гц	1/220-240/50									
Тип компрессора					инверторный ротационный							
Количество компрессоров		ШТ.	1	1	1	1	1	1	1			
Количество фреоновых контуров	3	ШТ.	1	1	1	1 1 1 1				1		
Регулирование производительно	СТИ					инверт	орное					
Уровень звукового давления ²		дБ(А)	53	54	55	54	54	56	56	56		
Хладагент												
Заводская заправка хладагента		КГ	1,45	1,45	1,45	1,7	2,6	3,2	3,1	3,6		
Диаметры фреоновых	Жидкость	MM	Ø6	,35			Ø9,53			Ø9,53		
патрубков	Пар	MM	Ø1	2,7			Ø15,9			Ø19,1		
Длина		MM	795	795	795	910	910	950	950	950		
Высота		MM	555	555	555	712	712	840	840	840		
Ширина		MM	365	365	365	426	426	440	440	440		
Длина в упаковке		MM	915	915	915	1045	1045	1025	1025	1025		
Высота в упаковке		MM	610	610	610	810	810	950	950	950		
Ширина в упаковке		MM	420	420	420	485	485	510	510	510		
Масса нетто/брутто		ΚΓ	35/38,5	35/38,5	35/38,5	49,0/53,0	52,5/56,5	62,5/69,5	75,0/82,0	77,5/84,5		
Максимальная протяженность тр ККБ до охладителя	симальная протяженность трубопровода от			25		35	4	5	6	0		
Максимальный перепад высот, К	(КБ выше	M	10 10 20		3	0						
Максимальный перепад высот, К	(КБ ниже	М		10		10	2	0	2	0		
Блок сопряжения 3				LZ-AHU0	90VA2-1			LZ-AHU2	200VA2-1			
Рабочий диапазон температур на	ружного воздуха	°C				от -5	до 55					

LUQ-E			200AUA4-H	224AUA4-H	260AUA4-H	280AUA4-H	224AUA4-V	280AUA4-V	335AUA4-V	400AUA4-V
Холодопроизводительность 1		кВт	20,0	22,4	26,0	28,0	22,4	28,0	33,5	40,0
Потребляемая мощность 1		кВт	5,13	5,93	7,43	8,24	5,17	6,81	9,13	10,58
EER1			3,90	3,78	3,50	3,40	4,33	4,11	3,67	3,78
Электропитание		ф/В/Гц				3/380-	415/50			
Тип компрессора						инверторный	ротационный			
Количество компрессоров		ШТ.	1	1	1	1	1	1	1	1
Количество фреоновых контур	00B	ШТ.	1	1	1	1	1	1	1	1
Регулирование производитель	НОСТИ					инверт	орное			
Уровень звукового давления ²		дБ(А)	57	57	58	59	57	58	60	60
Хладагент						R4	10A			
Заводская заправка хладагент	га	КГ	3,9	3,9	3,9	3,9	8,0	8,0	8,0	11,0
Диаметры фреоновых	Жидкость	MM		Ø	9,53		Ø1	12,7	Ø15,9	Ø15,9
патрубков	Пар	MM		Ø.	19,1		Ø2	25,4	Ø28,6	Ø31,8
Длина		MM	902	902	902	902	960	960	960	960
Высота		MM	1327	1327	1327	1327	1615	1615	1615	1615
Ширина		MM	370	370	370	370	765	765	765	765
Длина в упаковке		MM	1030	1030	1030	1030	1025	1025	1025	1025
Высота в упаковке		MM	1456	1456	1456	1456	1790	1790	1790	1790
Ширина в упаковке		MM	435	435	435	435	830	830	830	830
Масса нетто/брутто		КГ	115/125	115/125	115/125	115/125	188/204	188/204	188/204	197/213
Максимальная протяженность ККБ до охладителя	трубопровода от	М		1	20			1	75	
Максимальный перепад высот	г. ККБ выше	М			50			90		
Максимальный перепад высот		М			10				10	
Блок сопряжения ³	, -					LZ-AHU360VA	2			LZ-AHU560VA2
Рабочий лиапазон температур	напужного возлуха	°C.					ло 55			

LUQ-E			450AUA4-V	500AUA4-V	560AUA4-V	615AUA4-V	670AUA4-V	730AUA4-V	785AUA4-V	850AUA4-
Холодопроизводительность ¹		кВт	45	50	56	61,5	67	73	78,5	85
Потребляемая мощность 1		кВт	12,26	14,88	17,66	20,23	20,68	23,40	26,08	29,51
EER1			3,67	3,36	3,17	3,04	3,24	3,12	3,01	2,88
Электропитание		ф/В/Гц				3/380-	-415/50			
Тип компрессора						инверторный	ротационный			
Количество компрессоров		ШТ.	1	2	2	2	2	2	2	2
Количество фреоновых контуров	3	ШТ.	1	1	1	1	1	1	1	1
Регулирование производительно	СТИ					инверт	орное			
Уровень звукового давления ²		дБ(А)	61	62	63	63	64	64	64	64
Хладагент						R4	10A			
Заводская заправка хладагента		ΚГ	11,0	13,0	13,0	13,0	19,0	19,0	19,0	19,0
Диаметры фреоновых	Жидкость	MM	Ø1	15,9		Ø19,1		Ø2	2,2	Ø22,2
патрубков	Пар	MM		31,8		Ø31,8		Ø31,8		Ø38,1 1585
Длина		MM	960	1250	1250	1250	1585		Ø31,8 1585 1585	
Высота		MM	1615	1615	1615	1615	1615	1615	1615	1615
Ширина		MM	765	765	765	765	765	765	765	765
Длина в упаковке		MM	1025	1305	1305	1305	1650	1650	1650	1650
Высота в упаковке		MM	1790	1790	1790	1790	1810	1810	1810	1810
Ширина в упаковке		MM	830	820	820	820	840	840	840	840
Масса нетто/брутто		ΚГ	197/213	278/297	278/297	278/297	338/362	338/362	338/362	338/362
Максимальная протяженность тр ККБ до охладителя	убопровода от	М				1	75			
Максимальный перепад высот, к	(КБ выше	М				g	0			
Максимальный перепад высот, к	(КБ ниже	М				1	10			
Блок сопряжения 3				LZ-AHU560VA	2		360VA2 + 360VA2	LZ-AHU3	60VA2 + LZ-AH	IU560VA2
Рабочий диапазон температур на	аружного воздуха	°C				от -5	до 55			

Примечания


- 1. Данные приведены при условиях: температура охлаждаемого воздуха на входе +27 °C 2. Замер уровня звукового давления произведен в безэховой или полубезэховой камере по сухому термометру / +19 °C по влажному термометру; температура наружного воз-
- духа +35 °C по сухому термометру; эквивалентная длина трубопровода 5 м; перепад 3. Указанные блоки сопряжения предназначены для подключения к одноконтурному фре-

^{* —} модели с двумя контурами хладагента.

LESSAR PROF

Крышные кондиционеры LESSAR

Крышные кондиционеры (руфтопы, Rooftop) — моноблочные агрегаты, которые находят применение при кондиционировании больших, как правило, однообъемных зданий и помещений. Крышные кондиционеры имеют возможность подмеса свежего воздуха. Устанавливаются чаще всего на крышу, отсюда и второе название — руфтоп (от англ. Rooftop — крыша, поверхность крыши).

Принципиальная схема применения крышного кондиционера

Спиральный компрессор Danfoss

Спиральный компрессор Coneland

Объекты, где могут использоваться руфтопы:

- Коммерческие здания супер- и гипермаркеты, торговые центры.
- Промышленные здания и логистические центры.
- Аэропорты и вокзалы.
- Концертные залы, театры и кинотеатры.
- Офисные здания.
- Крытые стадионы.
- Конференц-залы.

LESSAR предлагает модельный ряд крышных кондиционеров, работающих как в режиме охлаждения, так и в режиме теплового насоса. Крышные кондиционеры LESSAR могут быть размещены как на кровле здания, так и на земле около здания.

Новый модельный ряд имеет более компактные массогабаритные характеристики и клиноременной вариатор для изменения внешнего статического давления и расхода рециркулируемого воздуха в соответствии с условиями проекта.

Новый модельный ряд получил возможность управления несколькими крышными кондиционерами с центрального пульта LZ-UPW7 (при использовании с каждым крышным кондиционером контроллера LZ-UDNW).

Основными преимуществами использования руфтопов являются:

- Быстрый и простой монтаж.
- Компактная моноблочная конструкция.
- Возможность изменения внешнего статического давления и расхода рециркулируемого воздуха в соответствии с условиями проекта.
- Возможность управления несколькими блоками с одного центрального пульта.
- Высокоэффективный компрессор.

Крышные кондиционеры заправляются хладагентом непосредственно на заводе и не требуют прокладки фреонопровода на этапе монтажа.

Для большей эффективности и снижения энергопотребления применяются спиральные компрессоры производства Danfoss, Copeland и Hitachi, оснащенные необходимыми защитами для надежной и безопасной работы. В стандартной комплектации компрессоры оснащены подогревом картера и виброизоляторами для тихой и эффективной работы. Использование двухконтурной системы в моделях холодопроизводительностью 53 кВт и более позволяет увеличить надежность работы.

Принцип действия клиноременного вариатора основан на изменении вручную передаточного числа за счет изменения рабочего диаметра шкива, т.е. при изменении расстояния L между коническими дисками шкива изменяется рабочий диаметр D данного шкива, что приводит к изменению скорости вращения вентилятора подачи воздуха в помещение при необходимости (не применяется в моделях на 22 и 26 кВт).

Корпус крышного кондиционера состоит из оцинкованной листовой стали, прошедшей горячую оцинковку и имеющей высокую антикоррозийную стойкость. Панели окрашены порошковой краской. Съемные панели и дверца предоставляют свободный доступ ко всем элементам крышного кондиционера. Для более удобного перемещения оборудования предусмотрены отверстия в рамном основании.

Панели легко снимаются, что обеспечивает легкий доступ к внутренним компонентам агрегата для ремонта и технического обслуживания.

Моющийся нейлоновый воздушный фильтр также удобно и легко снимается и устанавливается, что снижает затраты на техническое обслуживание.

Маркировка крышных кондиционеров

L U R - F A 53 N C 2 4 A

- L торговая марка LESSAR
- U наружный блок
- R крышный кондиционер
- 4 Тип компрессора
 - F спиральный компрессор постоянной производительности
- 5 Количество компрессоров
 - А один компрессор
 - D два компрессора
- 6 Холодопроизводительность (кВт)
- 7 Модельный ряд

- Режим работы
 - С только охлаждение
 - Н охлаждение и обогрев
- 9 Направление выхода воздуха
 - 2 только сбоку
- 10 Тип электропитания
 - 2 220 В/50 Гц/1 фаза
 - 4 380 В/50 Гц/3 фазы
- 1 Тип хладагента
 - A R410A

LESSAR PROF КРЫШНЫЕ КОНДИЦИОНЕРЫ

Крышные кондиционеры LUR-FA(D)...NC24A

Пульт управления настенный проводной

В КОМПЛЕКТЕ

Корпус

Корпус крышного кондиционера со съемными панелями изготовлен из окращенной оцинкованной листовой стали с высокой антикоррозийной стойкостью. Панели оцинкованы, снаружи окрашены порошковой краской. Съемные панели и дверца предоставляют свободный доступ ко всем элементам крышного кондиционера, позволяя с легкостью проводить работы по техническому обслуживанию оборудования.

Фреоновый контур

Фреоновый контур состоит из следующих основных компонентов: спирального компрессора, датчика температуры на выходе из компрессора, датчика высокого/низкого давления хладагента, капиллярной трубки. Использование двухконтурной системы в моделях производительностью 53 кВт и более позволяет увеличить надежность работы.

Компрессор

Спиральные компрессоры оснащены необходимыми защитными устройствами для надежной и безопасной работы. В стандартной комплектации компрессоры оснащены подогревом картера и резиновыми виброизоляторами.

Испаритель

Теплообменник испарителя состоит из медных трубок с внутренними насечками, оребренных алюминиевыми ламелями. В стандартную комплектацию входит дренажный поддон теплообменника испарителя изготовленный из опинкованной стали и покрытый износостойкой теплоизоляцией для предотвращения образования конденсата на внешних стенках поддона. Каждый теплообменник испарителя проходит проверку на герметичность.

Вентилятор для подачи воздуха в помещение

Для создания воздушного потока используется центробежный вентилятор с загнутыми вперед лопатками, позволяющий достигать необходимого расхода воздуха и необходимого внешнего статического давления для сети воздуховодов. Электродвигатель вентилятора установлен на регулируемой базе с фиксирующими устройствами. Вентилятор и шкив надежно прикреплены к валу и предназначены для непрерывной работы при максимальной мощности двигателя и скорости вращения вентилятора. Для изменения статического давления и расхода воздуха применяется клиноременной вариатор, кроме моделей на 22 и 26 кВт.

Конденсатор

Теплообменник конденсатора состоит из медных трубок с внутренними насечками с толщиной стенки 0,3 мм, оребренных алюминиевыми ламелями.

Вентилятор конденсатора

Осевой вентилятор с прямым приводом оснащен защитной решеткой, установленной на корпусе крышного кондиционера. Электродвигатель полностью закрытого типа с классом изоляции F и тепловой защитой.

Нейлоновый воздушный фильтр с классом очистки воздуха G2.

Управление

Управление осуществляется с помощью проводного пульта LZ-RIPW (в комплекте), который позволяет осуществлять выбор режима работы, настройку работы по таймеру, включение электронагревателя, изменение скорости вентилятора, блокировку/разблокировку кнопок пульта.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

■ в режиме охлаждения от +10 до +52 °C.

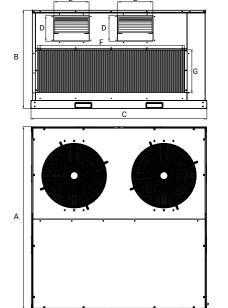
Рабочий диапазон температуры обрабатываемого воздуха от +17

Опции

- Контроллер LZ-UDNW.
- Контроллер LZ-ModBus3.
- Пульт управления LZ-UPW7 центральный (совместно c LZ-UDNW)
- Фильтр нейлоновый толщиной 1 или 2 дюйма.
- Фильтр металлический толщиной 1/2, 1 или 2 дюйма.

Технические характеристики —

LUR		FA22NC24A	FA26NC24A	FD30NC24A	FD35NC24A	FD44NC24A	FD53NC24A	FD61NC24A	FD70NC24A	FD87NC24A	FD105NC24A
Холодопроизводительность	кВт	22	26	30	35	44	53	61	70	87	105
Потребляемая мощность/охлаждение	кВт	6,6	7,9	9,2	10,7	13,3	16,7	19,1	22,6	28	34,3
Мощность электронагревателя	кВт	15	15	20	20	20/30	20/30	40	40	40	40
Напряжение питания	ф/В/Гц						0/50				
Расход рециркулируемого воздуха	М3/4	4757	4808	5947	6966	9345	11 890	12 910	14950	16 990	20 390
Статическое давление (заводская настройка)	Па	80	80	80	90	110	110	110	120	110	270
Максимальное статическое давление	Па	250	250	200	250	275	325	250	225	225	325
Уровень звукового давления	дБ(А)	71	72,1	70,3	72,6	71,8	75,5	75,0	75,3	76,8	77,9
Вентилятор испарителя											
Тип					L	(ентробежнь	ій вентилято	р			
Количество вентиляторов	ШТ.				1					2	
Тип передачи		Пря	мая				Реме	енная			
Вентилятор конденсатора											
Тип						Осе	вой				
Количество вентиляторов	ШТ.				1					2	
Тип передачи						Пря	мая				
Компрессор											
Тип						Спира	льный				
Количество	ШТ.	1	1	2	2	2	2	2	2	2	2
Производитель		Copeland	Danfoss	Hitachi	Hitachi	Copeland	Copeland	Copeland	Copeland	Danfoss	Danfoss
Хладагент		-				R4	10A				
Количество	КГ	4	3,7	6,5	2,35×2	1,7/2,8	2,25/4,9	3,7×2	5,65×2	6,0×2	7,6×2
Габаритные размеры без упаковк	И										
Длина	MM	1475	1475	1483	1486	1965	1965	1670	1670	2320	2320
Высота	MM	840	840	1231	1231	1230	1230	1247	1247	1245	1245
Ширина	MM	1130	1130	1138	1138	1130	1130	2192	2192	2220	2220
Масса нетто	КГ	223	231	331	335	433	470	590	670	895	910
Габаритные размеры с упаковкой											
Длина	мм	1495	1495	1500	1500	1995	1995	1695	1695	2330	2330
Высота	MM	870	870	1255	1255	1255	1255	1284	1284	1275	1275
Ширина	MM	1150	1150	1155	1155	1160	1160	2212	2212	2230	2230
Масса брутто	KF	228	236	342	346	453	490	620	700	925	940
wideca opy110	I/I	220	200	J42	340	700	470	020	700	920	240


Примечания

Параметры в таблице указаны при следующих условиях:

- Значения холодопроизводительности даны при параметрах: — температура воздуха в помещении 26,7 °C по сухому термометру/19,4 °C по
- температура наружного воздуха 35 °C по сухому термометру.
- Данные расхода рециркулируемого воздуха представлены при заводской настройке статического давления
- Данные уровня звукового давления получены замером на расстоянии 1 м.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	G, мм
LUR-FA22NC14A	1475	840	1130	285	327	966	294
LUR-FA26NC14A	1475	840	1130	285	327	966	294
LUR-FA30NC14A	1483	1231	1138	339	392	581	952
LUR-FA35NC14A	1486	1231	1138	339	392	581	952
LUR-FA44NC14A	1965	1230	1130	335	467	972	552
LUR-FD53NC14A	1965	1230	1130	335	467	972	552
LUR-FD61NC14A	1670	1247	2192	297	402	2014	640
LUR-FD70NC14A	1670	1247	2192	297	402	2014	640
LUR-FD87NC14A	2320	1245	2220	320	450	1922	553
LUR-FD105NC24A	2320	1245	2220	320	450	1922	553

LESSAR PROF

Крышные кондиционеры LUR-FA(D)...NH24A

В КОМПЛЕКТЕ

S D A

опция

Пульт управления LZ-RIPW

настенный проводной

Пульт управления LZ-RIPH

настенный проводной

Корпус

Корпус крышного кондиционера со съемными панелями изготовлен из окрашенной оцинкованной листовой стали с высокой антикоррозийной стойкостью. Панели оцинкованы, снаружи окрашены порошковой краской. Съемные панели и дверца предоставляют свободный доступ ко всем элементам крышного кондиционера, позволяя с легкостью проводить работы по техническому обслуживанию оборудования.

Фреоновый контур

Фреоновый контур состоит из следующих основных компонентов: спирального компрессора, датчика температуры на выходе из компрессора, датчика высокого/низкого давления хладагента, 4-ходового клапана, капиллярной трубки. Использование двухконтурной системы в моделях производительностью 53 кВт и более позволило увеличить надежность работы.

Компрессор

Спиральные компрессоры оснащены необходимыми защитными устройствами для надежной и безопасной работы. В стандартной комплектации компрессоры оснащены подогревом картера и резиновыми виброизоляторами.

Испаритель

Теплообменник испарителя состоит из медных трубок с внутренними насечками, оребренных алюминиевыми ламелями. В стандартную комплектацию входит дренажный поддон теплообменника испарителя, изготовленный из оцинкованной стали и покрытый износостойкой теплоизоляцией для предотвращения образования конденсата на внешних стенках поддона.

Вентилятор для подачи воздуха в помещение

Для создания воздушного потока используется центробежный вентилятор с загнутыми вперед лопатками, позволяющий достигать необходимого расхода воздуха и необходимого внешнего статического давления для сети воздуховодов. Электродвигатель вентилятора установлен на регулируемой базе с фиксирующими устройствами. Вентилятор и шкив надежно прикреплены к валу и предназначены для непрерывной работы при максимальной мощности двигателя и скорости вращения вентилятора. Для изменения статического давления и расхода воздуха применяется клиноременной вариатор, кроме моделей на 22 и 26 кВт.

Конденсатор

Теплообменник конденсатора состоит из медных трубок с внутренними насечками, оребренных алюминиевыми ламелями. Для изменения статического давления и расхода воздуха применяется клиноременной вариатор.

Вентилятор конденсатора

Осевой вентилятор с прямым приводом оснащен защитной решеткой, установленной на корпусе крышного кондиционера. Электродвигатель полностью закрытого типа с классом изоляции F и тепловой защитой.

Фильтр

Нейлоновый воздушный фильтр с классом очистки воздуха G2.

Управление

Управление осуществляется с помощью проводного пульта LZ-RIPW (в комплекте), который позволяет осуществлять выбор режима работы, настройку работы по таймеру, изменение скорости вентилятора, блокировку/разблокировку кнопок пульта.

Диапазон работы

Рабочий диапазон температуры наружного воздуха:

- в режиме охлаждения от +10 до +46 °C;
- в режиме нагревания от -9 до +24 °C.

Рабочий диапазон температуры обрабатываемого воздуха от +17 до +30 °C.

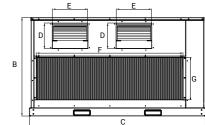
Опции

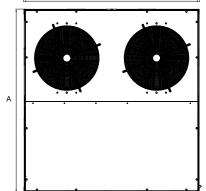
- Проводной пульт управления LZ-RIPH.
- Контроллер LZ-UDNW.
- Контроллер LZ-ModBus3.
- Пульт управления LZ-UPW7 центральный (совместно с LZ-UDNW).
- Фильтр нейлоновый толщиной 1 или 2 дюйма.
- Фильтр металлический толщиной 1/2, 1 или 2 дюйма.

Технические характеристики —

LUR			FA26NH24A	FD35NH24A	FD44NH24A	FD53NH24A	FD61NH24A	FD70NH24A	FD87NH24A	FD105NH24/
Холодопроизводи	тельность	кВт	26,0	35,0	44,0	53,0	61,0	70,0	87,0	105,0
Теплопроизводит	ельность	кВт	30,0	40,0	45,0	55,9	63,8	76,2	96,7	111,3
Потребляемая	Охлаждение	кВт	7,9	10,7	13,3	16,7	19,1	22,6	28,0	34,3
мощность	Нагрев	кВт	8,9	11,9	13,2	17,2	19,5	23,6	30,3	35,2
Напряжение пита	РИН	ф/В/Гц					3/380/50			
Расход рециркули	руемого воздуха	м3/ч	4808	6966	9345	11 890	12 910	14950	16 990	20390
Статическое давл настройка)	ение (заводская	Па	80	90	110	110	110	120	110	270
Максимальное ст	атическое давление	Па	250	250	275	325	250	225	225	325
Уровень звуковог	о давления	дБ(А)	72,1	71,5	71,8	76,9	76	75,3	76,8	77,9
Вентилятор ис	парителя									
Тип						Центр	обежный венти	илятор		
Количество венти	иляторов	ШТ.	1	1	1	1	2	2	2	2
Тип передачи			Прямая			,	Ременная			
Вентилятор ко	нденсатора									
Тип							Осевой			
Количество вен	тиляторов	ШТ.	1	1	1	1	2	2	2	2
Тип передачи						,	Прямая			
Компрессор										
Тип							Спиральный			
Количество		ШТ.	1	2	2	2	2	2	2	2
Производитель			Danfoss	Hitachi	Copeland	Copeland	Copeland	Copeland	Danfoss	Danfoss
Потребляемая мо	ЩНОСТЬ	кВт	8,0	5,7×2	4,75/9,19	4,75/10,8	9,19×2	10,8	12,1×2	13,7
Масло		МЛ	2460	1300×2	1685/2513	1685/3253	2513×2	3253×2	3300×2	3600×2
Хладагент							R410A			
Количество		КГ	3,7	2,35×2	1,7/2,8	2,25/4,9	3,7×2	5,65×2	6,0×2	7,6×2
Габаритные ра	змеры без упаковки									
Длина		MM	1475	1486	1965	1965	1670	1670	2320	2320
Высота		MM	840	1231	1230	1230	1247	1247	1245	1245
Ширина		MM	1130	1138	1130	1130	2192	2192	2220	2220
Масса нетто		КГ	325	343	451	492	615	690	940	950
Габаритные ра	змеры с упаковкой									
Длина		MM	1495	1500	1995	1995	1695	1695	2330	2330
Высота		MM	870	1255	1255	1255	1284	1284	1275	1275
Ширина		MM	1150	1155	1160	1160	2212	2212	2230	2230
ширина										985

Примечания


Параметры в таблице указаны при следующих условиях:


- Значения холодопроизводительности даны при параметрах:
 температура воздуха в помещении 26,7 °C по сухому термометру/ 19.4 °C по мокрому термометру:
- температура наружного воздуха 35 °C по сухому термометру.
- Значения теплопроизводительности даны при параметрах:

- температура воздуха в помещении 20 °C по сухому термометру/ 15 °C по мокрому термометру:
- температура наружного воздуха 7 °С по сухому термометру/ 6 °С по мокрому термометру.
- Данные расхода рециркулируемого воздуха представлены при заводской настройке
- статического давления.
 Данные уровня звукового давления получены замером на расстоянии 1 м.

Габаритные размеры

Модель	А, мм	В, мм	С, мм	D, мм	Е, мм	F , мм	G, мм
LUR-FA26NC14A	1475	840	1130	285	327	966	294
LUR-FA35NC14A	1486	1231	1138	339	392	581	952
LUR-FA44NC14A	1965	1230	1130	335	467	972	552
LUR-FD53NC14A	1965	1230	1130	335	467	972	552
LUR-FD61NC14A	1670	1247	2192	297	402	2014	640
LUR-FD70NC14A	1670	1247	2192	297	402	2014	640
LUR-FD87NC14A	2320	1245	2220	320	450	1922	553
LUR-FD105NC24A	2320	1245	2220	320	450	1922	553

Модули гидравлические насосные

ных) включений. Гидравлические насосные модули LZ-CG разработаны для установки внутри помещения.

Маркировка модулей гидравлических насосных -

- LZ akceccyap
- Тип аксессуара
- С гидромодуль для чиллеров
- Модельный ряд
- G модельный ряд

- Диапазон холодопроизводительности* чиллеров
- Комплектация Лайт
- * Холодопроизводительность определена при следующих параметрах:
- температура воды на входе в испаритель +12°C;
- температура воды на выходе из испарителя +7 °C.

Рама

Гидравлический насосный модуль смонтирован на стальной металлической раме. Все металлические поверхности гидравлического насосного модуля загрунтованы и окрашены.

Hacoc

В зависимости от расхода перекачиваемой среды гидравлические насосные модули оснащены насосами Wilo типа IPL либо IL. Насосы данных типов являются одноступенчатыми центробежными насосами низкого давления, моноблочной конструкции, с напрямую присоединенным фланцевым электродвигателем. Корпусы насосов имеют Inline конструкцию с расположением всасывающего и нагнетающего патрубков на одной оси. Вал уплотняется скользящим торцевым уплотнением.

Электромотор

Электромотор со степенью защиты IP55, классом нагревостойкости изоляции F, напрямую соединен с валом насоса.

Блок управления

Блок управления состоит из щита, который укомплектован пускозащитными электрическими компонентами, выполняющими защиту от минимального/максимального напряжения, защиту от перекоса фаз, защиту от неправильного чередования фаз, от перегрузки электродвигателя насоса.

Диапазон работы

- Тип перекачиваемой жидкости: вода.
- Температура перекачиваемой воды: от +0,5 до +120 °C.
- Тип перекачиваемой жидкости: водный раствор пропиленгликоля, водный раствор этиленгликоля с концентрацией до 40% по объему.

- Температура перекачиваемых водных растворов гликолей: от -10 до +40 °C (при использовании водных растворов гликолей необходимой концентрации).
- Температура воздуха в помещении: от +5 до +40 °C.
- Максимальное рабочее давление перекачиваемой жидкости: 6 бар (опционально 10 бар).

Комплектация Лайт

Гидравлические насосные модули в комплектации Лайт состоят из следующих компонентов:

- насос центробежный Wilo;
- затворы дисковые поворотные;
- компенсаторы антивибрационные: • манометры на всасывании и нагнетании;
- вентили запорные шаровые с воздухоотводчиком для маномет-
- дифференциальное реле давления;
- вентиль запорный шаровый на слив с насоса;
- бак расширительный;
- вентиль запорный шаровый для расширительного бака;
- клапан предохранительный;
- воздухоотводчик автоматический*;
- реле протока*;
- щит управления насосным модулем.

Комплектация Стандарт

Гидравлические насосные модули в комплектации Стандарт состоят из компонентов, перечисленных в комплектации Лайт, и следующих компонентов:

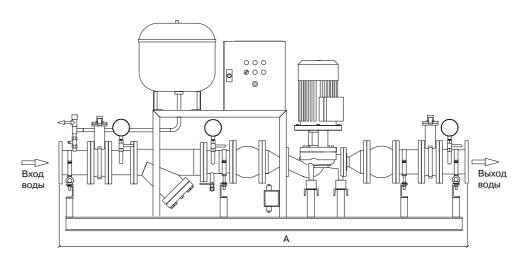
- фильтр сетчатый фланцевый;
- клапан балансировочный*.

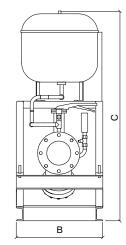
Примечание

* Компоненты необходимо самостоятельно установить на трубопровод на месте монтажа.

Технические характеристики —

LZ-CG		30	60-65	90	120-160		
Расход воды ¹	м³/ч	5,2	11,2	15,6	27,5		
Напор¹	м вод.ст.	22	22	21,3	24,1		
Потребляемая мощность ¹	кВт	1,20	1,53	1,76	3,20		
Модель насоса		IPL 40/130-2.2/2	IPL 40/130-2.2/2	IPL 40/130-2.2/2	IPL 40/150-3/2		
Электропитание	ф/В/Гц	3/380/50					
Объем расширительного бака	Л	12	12	35	35		
Максимальное рабочее давление	МПа		0),6			
Диаметр подсоединения (вход/выход)	MM	DN40	DN65	DN80	DN100		
Размеры (Д×Ш×В)	MM	2000×350×900	2000×370×1100	2300×450×1100	2500×450×1100		
Масса (сухая)	КГ	225	230	260	320		


LZ-CG		195-270	300-480	520-800	900-1000	1000-1 600
Расход воды ¹	м³/ч	47,8	82,6	138,9	173,9	277,3
Напор¹	м вод.ст.	23,4	22,7	24,5	22,6	21,3
Потребляемая мощность ¹	кВт	4,5	7,2	13,6	14,6	24,3
Модель насоса		IPL 50/155-4/2	IPL 65/155-7.5/2	IL 100/150-15/2	IL 100/150-15/2	IL 200/270-30/4
Электропитание	ф/В/Гц			3/380/50		
Объем расширительного бака	Л	50	50	80	80	100
Максимальное рабочее давление	МПа			0,6		
Диаметр подсоединения (вход/выход)	MM	DN125	DN150	DN200	DN250	DN300
Размеры (Д×Ш×В)	MM	2800×450×1100	3200×500×1300	3500×500×1500	4200×800×1600	4400×800×1600
Масса (сухая)	КГ	360	540	700	900	1100


Примечание

Параметры приведены для максимальной холодопроизводительности чиллера, указанной в маркировке гидравлического насосного модуля, при температуре воды на входе +12 °C и температуре воды +7 °C на выходе из испарителя. Напорно-расходная характеристика насоса указана согласно рабочей точке, по версии программы подбора насосов

Габаритные размеры

Модель	А, мм	В, мм	С, мм	Вход воды	Выход воды
LZ-CG 30	2000	350	900	DN40	DN40
LZ-CG 60-65	2000	370	1100	DN65	DN65
LZ-CG 90	2300	450	1100	DN80	DN80
LZ-CG 120-160	2500	450	1100	DN100	DN100
LZ-CG 195-270	2800	450	1100	DN125	DN125
LZ-CG 300-480	3200	500	1300	DN150	DN150
LZ-CG 520-800	3500	500	1500	DN200	DN200
LZ-CG 900-1000	4200	800	1600	DN250	DN250
LZ-CG 1000-1 600	4400	800	1600	DN300	DN300

Модули гидравлические насосные

с резервным насосом

до 40% по объему без твердых (абразивных) включений. Гидравлические насосные модули LZ-CG...D разработаны для установки внутри помещения.

Маркировка модулей гидравлических насосных с резервным насосом

- LZ akceccyap
- Тип аксессуара
- С гидромодуль для чиллеров
- Модельный ряд G — модельный ряд

- Диапазон холодопроизводительности* чиллеров
- Резервный насос
- Комплектация Лайт
- * Холодопроизводительность определена при следующих параметрах:
- температура воды на входе в испаритель +12 °C
- температура воды на выходе из испарителя +7 °C.

Рама

Гидравлический насосный модуль смонтирован на стальной металлической раме. Все металлические поверхности гидравлического насосного модуля загрунтованы и окрашены.

Hacoc

В зависимости от расхода перекачиваемой среды гидравлические насосные модули оснащены насосами Wilo типа IPL либо IL. Насосы данных типов являются одноступенчатыми центробежными насосами низкого давления, моноблочной конструкции, с напрямую присоединенным фланцевым электродвигателем. Корпусы насосов имеют Inline конструкцию с расположением всасывающего и нагнетающего патрубков на одной оси. Вал уплотняется скользящим торцевым уплотнением.

Электромотор

Электромотор со степенью защиты IP55, классом нагревостойкости изоляции F напрямую соединен с валом насоса.

Блок управления

Блок управления состоит из щита, который укомплектован пускозащитными электрическими компонентами, выполняющими защиту от минимального/максимального напряжения, защиту от перекоса фаз, защиту от неправильного чередования фаз, от перегрузки электродвигателя насоса, ручной выбор работы основного/ резервного насоса.

Диапазон работы

- Тип перекачиваемой жидкости: вода.
- Температура перекачиваемой воды: от +0,5 до +120 °C.
- Тип перекачиваемой жидкости: водный раствор пропиленгликоля, водный раствор этиленгликоля с концентрацией до 40% по объему.

- Температура перекачиваемых водных растворов гликолей: от -10 до +40 °C (при использовании водных растворов гликолей необходимой концентрации).
- Температура воздуха в помещении: от +5 до +40 °C.
- Максимальное рабочее давление перекачиваемой жидкости: 6 бар (опционально 10 бар).

Комплектация Лайт

Гидравлические насосные модули в комплектации Лайт состоят из следующих компонентов:

- насосы центробежные Wilo (основной/резервный);
- затворы дисковые поворотные;
- компенсаторы антивибрационные;
- манометры на всасывании и нагнетании;
- вентили запорные шаровые с воздухоотводчиком для маномет-
- дифференциальные реле давления;
- вентили запорные шаровые на слив с насоса;
- бак расширительный;
- вентиль запорный шаровый для расширительного бака; клапан предохранительный;
- воздухоотводчик автоматический*;
- клапаны обратные;
- реле протока*:
- щит управления насосным модулем.

Комплектация Стандарт

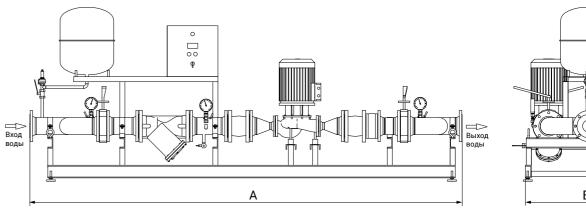
Гидравлические насосные модули в комплектации Стандарт состоят из компонентов, перечисленных в комплектации Лайт, и следующих компонентов:

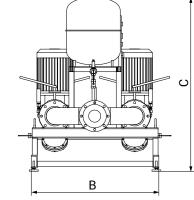
- фильтры сетчатые фланцевые;
- клапан балансировочный*

Примечание

Компоненты необходимо самостоятельно установить на трубопровод на месте монтажа.

Технические характеристики —


LZ-CGD		30	60-65	90	120-160		
Расход воды ¹	м³/ч	5,2	11,2	15,6	27,5		
Напор¹	м вод.ст.	22	22	21,3	24,1		
Потребляемая мощность ¹	кВт	1,20	1,53	1,76	3,20		
Модель насоса		IPL 40/130-2.2/2	IPL 40/130-2.2/2	IPL 40/130-2.2/2	IPL 40/150-3/2		
Электропитание	ф/В/Гц	3/380/50					
Объем расширительного бака	Л	12	12	35	35		
Максимальное рабочее давление	МПа	0,6					
Диаметр подсоединения (вход/выход)	MM	DN40	DN65	DN80	DN100		
Размеры (Д×Ш×В)	MM	2400×800×1000	2600×800×1100	2900×1000×1200	3200×1000×1300		
Масса (сухая)	КГ	510	540	550	650		


LZ-CGD		195-270	300-480	520-800	900-1000	1000-1 600
Расход воды ¹	м³/ч	47,8	82,6	138,9	173,9	277,3
Напор¹	м вод.ст.	23,4	22,7	24,5	22,6	21,3
Потребляемая мощность ¹	кВт	4,5	7,2	13,6	14,6	24,3
Модель насоса		IPL 50/155-4/2	IPL 65/155-7.5/2	IL 100/150-15/2	IL 100/150-15/2	IL 200/270-30/4
Электропитание	ф/В/Гц	3/380/50				
Объем расширительного бака	Л	50	50	80	80	100
Максимальное рабочее давление	МПа	0,6				
Диаметр подсоединения (вход/выход)	MM	DN125	DN150	DN200	DN250	DN300
Размеры (Д×Ш×В)	MM	3400×1000×1400	3700×1200×1500	4740×1400×1500	4900×1800×1800	5200×1800×1800
Масса (сухая)	КГ	700	1200	1500	1900	2250

Примечание

Габаритные размеры

Модель	А, мм	В, мм	С, мм	Вход воды	Выход воды
LZ-CG 30 D	2400	800	1000	DN40	DN40
LZ-CG 60-65 D	2600	800	1100	DN65	DN65
LZ-CG 90 D	2900	1000	1200	DN80	DN80
LZ-CG 120-160 D	3200	1000	1300	DN100	DN100
LZ-CG 195-270 D	3400	1000	1400	DN125	DN125
LZ-CG 300-480 D	3700	1200	1500	DN150	DN150
LZ-CG 520-800 D	4740	1400	1500	DN200	DN200
LZ-CG 900-1000 D	4900	1800	1800	DN250	DN250
LZ-CG 1000-1 600 D	5200	1800	1800	DN300	DN300

Параметры приведены для максимальной холодопроизводительности чиллера, указанной в маркировке гидравлического насосного модуля, при температуре воды на входе +12 °C и температуре воды +7 °C на выходе из испарителя. Напорно-расходная характеристика насоса указана согласно рабочей точке, по версии программы подбора насосов

LESSAR PROF

Обозначения, используемые в каталоге

2-трубный фанкойл

Хладагент R134a

4-трубный фанкойл

Спиральный компрессор

Внешнее статическое давление воздуха 12 Па

Ротационный компрессор

Вентилятор с DC-электродвигателем

Двухвинтовой компрессор

Естественное охлаждение

Центробежный компрессор

Групповой контроль

Охлаждение

Full DC Inverter — технология, при которой все компрессоры, а также вентиляторы наружных блоков являются полностью инверторными

Нагрев

Возможность исполнения чиллера с промежуточным теплообменником

Охлаждение/нагрев

Возможность коррозионностойкого исполнения

Низкотемпературный комплект

162

LESSAR PROF ДЛЯ ЗАМЕТОК

Внимание

Представленное в настоящем каталоге оборудование имеет необходимую документацию, подтверждающую его соответствие требованиям нормативных документов.

Работы по монтажу оборудования должны выполняться в соответствии с требованиями действующих нормативно-технических документов и инструкциями по монтажу и эксплуатации оборудования.

Технические характеристики оборудования, а также правила и условия эксплуатации представленного оборудования определяются технической документацией, прилагаемой к оборудованию.

Изготовитель оставляет за собой право на внесение изменений в технические характеристики, внешний вид и потребительские свойства оборудования без предварительного уведомления.

Класс энергетической эффективности определен в соответствии с приказом Министерства промышленности и торговли РФ № 357 от 29.04.10. Информация об изготовителе оборудования содержится в сертификате или декларации о соответствии.